Sentences with phrase «decadal oscillation over»

This may be related to an ongoing shift in the Pacific Decadal Oscillation over spring and early summer this year.

Not exact matches

... On decadal to multidecadal timescales, the Pacific Decadal Oscillation (PDO), the Atlantic Multidecadal Oscillation, and the Atlantic tripole mode determine the variability of rainfall over India (Sen Roy et al., 2003; Lu et al., 2006; Zhang and Delworth, 2006; Li et al., 2008; Sen Roy, 2011; Krishnamurthy and Krishnamurthy, 2014a, 2014b, decadal to multidecadal timescales, the Pacific Decadal Oscillation (PDO), the Atlantic Multidecadal Oscillation, and the Atlantic tripole mode determine the variability of rainfall over India (Sen Roy et al., 2003; Lu et al., 2006; Zhang and Delworth, 2006; Li et al., 2008; Sen Roy, 2011; Krishnamurthy and Krishnamurthy, 2014a, 2014b, Decadal Oscillation (PDO), the Atlantic Multidecadal Oscillation, and the Atlantic tripole mode determine the variability of rainfall over India (Sen Roy et al., 2003; Lu et al., 2006; Zhang and Delworth, 2006; Li et al., 2008; Sen Roy, 2011; Krishnamurthy and Krishnamurthy, 2014a, 2014b, 2016b).
Over the last 30 years of direct satellite observation of the Earth's climate, many natural influences including orbital variations, solar and volcanic activity, and oceanic conditions like El Nino (ENSO) and the Pacific Decadal Oscillation (PDO) have either had no effect or promoted cooling conditions.
His research concerns understanding global climate and its variations using observations and covers the quasi biennial oscillation, Pacific decadal oscillation and the annular modes of the Arctic oscillation and the Antarctic oscillation, and the dominant spatial patterns in month - to - month and year - to - year climate variability, including the one through which El Niño phenomenon in the tropical Pacific influences climate over North America.
The roughly thirty year period over which we have reliable reanalyses and satellite measurements is too short to rule out the influence of natural climate variability, such as the Pacific Decadal Oscillation.
Abstract — 2008 Climate and wildfires in the North American boreal forest... Climate controls the area burned through changing the dynamics of large - scale teleconnection patterns (Pacific Decadal Oscillation / El Niño Southern Oscillation and Arctic Oscillation, PDO / ENSO and AO) that control the frequency of blocking highs over the continent at different time scales......... Since the end of the Little Ice Age, the climate has been unusually moist and variable: large fire years have occurred in unusual years, fire frequency has decreased and fire — climate relationships have occurred at interannual to decadal time scales...... http://rstb.royalsocietypublishing.org/content/363/1501/2315.short ---------------Decadal Oscillation / El Niño Southern Oscillation and Arctic Oscillation, PDO / ENSO and AO) that control the frequency of blocking highs over the continent at different time scales......... Since the end of the Little Ice Age, the climate has been unusually moist and variable: large fire years have occurred in unusual years, fire frequency has decreased and fire — climate relationships have occurred at interannual to decadal time scales...... http://rstb.royalsocietypublishing.org/content/363/1501/2315.short ---------------decadal time scales...... http://rstb.royalsocietypublishing.org/content/363/1501/2315.short ----------------------
The Atlantic Multidecadal Oscillation (AMO) or Variability (AMV) is a mode of low frequency (i.e., decadal to multidecadal) climate variability centered over the North Atlantic basin.
Thoman says the weather service has pretty good data collected over the past 65 years on the so - called Pacific Decadal Oscillation, or PDO, cycle that drives El Ninos and La Ninas.
The second chart shows that over the 20thC the SL record was marked by significant decadal oscillations in the rate of rise, varying from -1 mm / year to +5 mm / year, but no apparent acceleration over the period.
It has been shown that the mass balance of these glaciers correlate with the PDO (Pacific Decadal Oscillation) and MEI (Mulitvariate ENSO index) particularly over a multi year period (McCabe and Fountain, 1995; Bitz and Batisti 1999; Hodge et al., 1998).
The models exhibit large variations in the rate of warming from year to year and over a decade, owing to climate variations such as ENSO, the Atlantic Multi-Decadal Oscillation and Pacific Decadal Oscillation.
Upper panel: Changes in global surface temperature over the period 1900 - 2003 associated with the Pacific Decadal Oscillation (PDO) in the GISTEMP and ERSST datasets.
Over these shorter periods, there are many modes of climate variability, usually involving semi-structured oscillations in sea surface temperatures, like the El Niño - Southern Oscillation, the Pacific Decadal Oscillation, the Arctic Oscillation, and so on.
Environmental variables estimated over larger spatial and temporal scales included the upwelling index (UI) for 48 ° N, 125 ° W (http://www.pfeg.noaa.gov), an indicator of upwelling strength based on wind stress measurements, as well as the Pacific Decadal Oscillation (PDO, http://jisao.washington.edu/pdo/PDO.latest), a composite indicator of ocean temperature anomalies [33], seawater temperature from Buoy 46041 ∼ 50 km to the southwest from Tatoosh (www.ndbc.noaa.gov), and remote sensing of chl a (SeaWiFS, AquaModis).
On top of the oscillation is a tendency for changing frequency and intensity of ENSO events over the same 20 to 30 year period as the Pacific Decadal Ooscillation is a tendency for changing frequency and intensity of ENSO events over the same 20 to 30 year period as the Pacific Decadal OscillationOscillation.
Over the past 60 years, Alaska has warmed more than twice as rapidly as the rest of the United States, with state - wide average annual air temperature increasing by 3 °F and average winter temperature by 6 °F, with substantial year - to - year and regional variability.1 Most of the warming occurred around 1976 during a shift in a long - lived climate pattern (the Pacific Decadal Oscillation [PDO]-RRB- from a cooler pattern to a warmer one.
... I think the weakness in this post is the idea that decadal oscillations in climate properties are potentially drivers of climate warming over time.
Bart quoted me as saying: «However, I think the weakness in this post is the idea that decadal oscillations in climate properties are potentially drivers of climate warming over time.»
However, I think the weakness in this post is the idea that decadal oscillations in climate properties are potentially drivers of climate warming over time.
«In the oceans, major climate warming and cooling and pH (ocean pH about 8.1) changes are a fact of life, whether it is over a few years as in an El Niño, over decades as in the Pacific Decadal Oscillation or the North Atlantic Oscillation, or over a few hours as a burst of upwelling (pH about 7.59 - 7.8) appears or a storm brings acidic rainwater (pH about 4 - 6) into an estuary.»
Total cloud cover detrended standardized anomalies averaged over the entire NARR domain; total cloud cover detrended standard anomalies averaged over continental landmass; total cloud cover detrended standard anomalies averaged over oceans; sun spot number and 10.7 cm solar radio flux; GCR neutron monitors; the Atlantic Multidecadal Oscillation; the Quasi-Biennial Oscillation; the Multivariate El Nino Southern Oscillation; the North Atlantic Oscillation; and the Pacific Decadal Oscillation.
These include the Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO), both operating over a period of a few decades, and the El Niño Southern Oscillation (ENSO), which has a period of three to seven years.
The natural causes of climate variations that have time scales (century, decadal; e.g. Schwabe sunspot cycles, average solar output during the satellite measuring era,, ENSO / PDO / AMO and the rest of the alphabet soup of «oscillations», volcanism) either don't capture energy over multiple cycles — if I push a child on a swing, his average position doesn't move away from me — or are going in the wrong direction.
The models heavily relied upon by the Intergovernmental Panel on Climate Change (IPCC) had not projected this multidecadal stasis in «global warming»; nor (until trained ex post facto) the fall in TS from 1940 - 1975; nor 50 years» cooling in Antarctica (Doran et al., 2002) and the Arctic (Soon, 2005); nor the absence of ocean warming since 2003 (Lyman et al., 2006; Gouretski & Koltermann, 2007); nor the onset, duration, or intensity of the Madden - Julian intraseasonal oscillation, the Quasi-Biennial Oscillation in the tropical stratosphere, El Nino / La Nina oscillations, the Atlantic Multidecadal Oscillation, or the Pacific Decadal Oscillation that has recently transited from its warming to its cooling phase (oceanic oscillations which, on their own, may account for all of the observed warmings and coolings over the past half - century: Tsoniset al., 2007); nor the magnitude nor duration of multi-century events such as the Mediaeval Warm Period or the Little Ice Age; nor the cessation since 2000 of the previously - observed growth in atmospheric methane concentration (IPCC, 2007); nor the active 2004 hurricane season; nor the inactive subsequent seasons; nor the UK flooding of 2007 (the Met Office had forecast a summer of prolonged droughts only six weeks previously); nor the solar Grand Maximum of the past 70 years, during which the Sun was more active, for longer, than at almost any similar period in the past 11,400 years (Hathaway, 2004; Solankiet al., 2005); nor the consequent surface «global warming» on Mars, Jupiter, Neptune's largest moon, and even distant Pluto; nor the eerily - continuing 2006 solar minimum; nor the consequent, precipitate decline of ~ 0.8 °C in TS from January 2007 to May 2008 that has canceled out almost all of the observed warming of the 20oscillation, the Quasi-Biennial Oscillation in the tropical stratosphere, El Nino / La Nina oscillations, the Atlantic Multidecadal Oscillation, or the Pacific Decadal Oscillation that has recently transited from its warming to its cooling phase (oceanic oscillations which, on their own, may account for all of the observed warmings and coolings over the past half - century: Tsoniset al., 2007); nor the magnitude nor duration of multi-century events such as the Mediaeval Warm Period or the Little Ice Age; nor the cessation since 2000 of the previously - observed growth in atmospheric methane concentration (IPCC, 2007); nor the active 2004 hurricane season; nor the inactive subsequent seasons; nor the UK flooding of 2007 (the Met Office had forecast a summer of prolonged droughts only six weeks previously); nor the solar Grand Maximum of the past 70 years, during which the Sun was more active, for longer, than at almost any similar period in the past 11,400 years (Hathaway, 2004; Solankiet al., 2005); nor the consequent surface «global warming» on Mars, Jupiter, Neptune's largest moon, and even distant Pluto; nor the eerily - continuing 2006 solar minimum; nor the consequent, precipitate decline of ~ 0.8 °C in TS from January 2007 to May 2008 that has canceled out almost all of the observed warming of the 20Oscillation in the tropical stratosphere, El Nino / La Nina oscillations, the Atlantic Multidecadal Oscillation, or the Pacific Decadal Oscillation that has recently transited from its warming to its cooling phase (oceanic oscillations which, on their own, may account for all of the observed warmings and coolings over the past half - century: Tsoniset al., 2007); nor the magnitude nor duration of multi-century events such as the Mediaeval Warm Period or the Little Ice Age; nor the cessation since 2000 of the previously - observed growth in atmospheric methane concentration (IPCC, 2007); nor the active 2004 hurricane season; nor the inactive subsequent seasons; nor the UK flooding of 2007 (the Met Office had forecast a summer of prolonged droughts only six weeks previously); nor the solar Grand Maximum of the past 70 years, during which the Sun was more active, for longer, than at almost any similar period in the past 11,400 years (Hathaway, 2004; Solankiet al., 2005); nor the consequent surface «global warming» on Mars, Jupiter, Neptune's largest moon, and even distant Pluto; nor the eerily - continuing 2006 solar minimum; nor the consequent, precipitate decline of ~ 0.8 °C in TS from January 2007 to May 2008 that has canceled out almost all of the observed warming of the 20Oscillation, or the Pacific Decadal Oscillation that has recently transited from its warming to its cooling phase (oceanic oscillations which, on their own, may account for all of the observed warmings and coolings over the past half - century: Tsoniset al., 2007); nor the magnitude nor duration of multi-century events such as the Mediaeval Warm Period or the Little Ice Age; nor the cessation since 2000 of the previously - observed growth in atmospheric methane concentration (IPCC, 2007); nor the active 2004 hurricane season; nor the inactive subsequent seasons; nor the UK flooding of 2007 (the Met Office had forecast a summer of prolonged droughts only six weeks previously); nor the solar Grand Maximum of the past 70 years, during which the Sun was more active, for longer, than at almost any similar period in the past 11,400 years (Hathaway, 2004; Solankiet al., 2005); nor the consequent surface «global warming» on Mars, Jupiter, Neptune's largest moon, and even distant Pluto; nor the eerily - continuing 2006 solar minimum; nor the consequent, precipitate decline of ~ 0.8 °C in TS from January 2007 to May 2008 that has canceled out almost all of the observed warming of the 20Oscillation that has recently transited from its warming to its cooling phase (oceanic oscillations which, on their own, may account for all of the observed warmings and coolings over the past half - century: Tsoniset al., 2007); nor the magnitude nor duration of multi-century events such as the Mediaeval Warm Period or the Little Ice Age; nor the cessation since 2000 of the previously - observed growth in atmospheric methane concentration (IPCC, 2007); nor the active 2004 hurricane season; nor the inactive subsequent seasons; nor the UK flooding of 2007 (the Met Office had forecast a summer of prolonged droughts only six weeks previously); nor the solar Grand Maximum of the past 70 years, during which the Sun was more active, for longer, than at almost any similar period in the past 11,400 years (Hathaway, 2004; Solankiet al., 2005); nor the consequent surface «global warming» on Mars, Jupiter, Neptune's largest moon, and even distant Pluto; nor the eerily - continuing 2006 solar minimum; nor the consequent, precipitate decline of ~ 0.8 °C in TS from January 2007 to May 2008 that has canceled out almost all of the observed warming of the 20th century.
Given the downtrend in global temperatures over the past 11 years and the likelihood that this will continue for some time (see Section 2.4 of my Comments) because of the Pacific Decadal Oscillation (PDO), there would appear to be ample time to start over and do it carefully and thoroughly this time with full input by everyone that may be interested.
a b c d e f g h i j k l m n o p q r s t u v w x y z