Sentences with phrase «driven hydrogen production»

Lee, M. H. et al. p - Type InP Nanopillar Photocathodes for Efficient Solar - Driven Hydrogen Production.
When it comes to driving hydrogen production, a new catalyst built at PNNL can do what was previously shown to happen only in nature: store energy in hydrogen and release that energy on demandâ $» an essentiality for viable energy alternatives to fossil fuels.

Not exact matches

Of course, the goal of a sustainable transport system demands not only zero carbon emissions during driving but also during the production and distribution of the fuel, be it electricity or hydrogen.
«We have developed a new type of protective coating that enables a key process in the solar - driven production of fuels to be performed with record efficiency, stability, and effectiveness, and in a system that is intrinsically safe and does not produce explosive mixtures of hydrogen and oxygen,» says Nate Lewis, the George L. Argyros Professor and professor of chemistry at Caltech and a coauthor of a new study, published the week of March 9 in the online issue of the journal the Proceedings of the National Academy of Sciences, that describes the film.
When applied to semiconducting materials such as silicon, the nickel oxide film prevents rust buildup and facilitates an important chemical process in the solar - driven production of fuels such as methane or hydrogen.
Decoupling Hydrogen Production and Water Oxidation in a Hybrid Solar - Driven Vanadium Redox Cell Supported By a Bipolar Membrane with Earth - Abundant Catalysts Chengxiang Xiang
In addition to project management, her role includes managing the HydroGEN EMN Consortium and serving as the DOE co-chair for the U.S. DRIVE's Hydrogen Production TechnicHydroGEN EMN Consortium and serving as the DOE co-chair for the U.S. DRIVE's Hydrogen Production TechnicHydrogen Production Technical Team.
«When this specially engineered wafer is hit by photons, the electric field helps separate photogenerated electrons and holes to drive the production of hydrogen and oxygen molecules efficiently,» Chowdhury says.
1 Executive Summary 2 Scope of the Report 3 The Case for Hydrogen 3.1 The Drive for Clean Energy 3.2 The Uniqueness of Hydrogen 3.3 Hydrogen's Safety Record 4 Hydrogen Fuel Cells 4.1 Proton Exchange Membrane Fuel Cell 4.2 Fuel Cells and Batteries 4.3 Fuel Cell Systems Durability 4.4 Fuel Cell Vehicles 5 Hydrogen Fueling Infrastructure 5.1 Hydrogen Station Hardware 5.2 Hydrogen Compression and Storage 5.3 Hydrogen Fueling 5.4 Hydrogen Station Capacity 6 Hydrogen Fueling Station Types 6.1 Retail vs. Non-Retail Stations 6.1.1 Retail Hydrogen Stations 6.1.2 Non-Retail Hydrogen Stations 6.2 Mobile Hydrogen Stations 6.2.1 Honda's Smart Hydrogen Station 6.2.2 Nel Hydrogen's RotoLyzer 6.2.3 Others 7 Hydrogen Fueling Protocols 7.1 SAE J2601 7.2 Related Standards 7.3 Fueling Protocols vs. Vehicle Charging 7.4 SAE J2601 vs. SAE J1772 7.5 Ionic Compression 8 Hydrogen Station Rollout Strategy 8.1 Traditional Approaches 8.2 Current Approach 8.3 Factors Impacting Rollouts 8.4 Production and Distribution Scenarios 8.5 Reliability Issues 9 Sources of Hydrogen 9.1 Fossil Fuels 9.2 Renewable Sources 10 Methods of Hydrogen Production 10.1 Production from Non-Renewable Sources 10.1.1 Steam Reforming of Natural Gas 10.1.2 Coal Gasification 10.2 Production from Renewable Sources 10.2.1 Electrolysis 10.2.2 Biomass Gasification 11 Hydrogen Production Scenarios 11.1 Centralized Hydrogen Production 11.2 On - Site Hydrogen Production 11.2.1 On - site Electrolysis 11.2.2 On - Site Steam Methane Reforming 12 Hydrogen Delivery 12.1 Hydrogen Tube Trailers 12.2 Tanker Trucks 12.3 Pipeline Delivery 12.4 Railcars and Barges 13 Hydrogen Stations Cost Factors 13.1 Capital Expenditures 13.2 Operating Expenditures 14 Hydrogen Station Deployments 14.1 Asia - Pacific 14.1.1 Japan 14.1.2 Korea 14.1.3 China 14.1.4 Rest of Asia - Pacific 14.2 Europe, Middle East & Africa (EMEA) 14.2.1 Germany 14.2.2 The U.K. 14.2.3 Nordic Region 14.2.4 Rest of EMEA 14.3 Americas 14.3.1 U.S. West Coast 14.3.2 U.S. East Coast 14.3.3 Canada 14.3.4 Latin America 15 Selected Vendors 15.1 Air Liquide 15.2 Air Products and Chemicals, Inc. 15.3 Ballard Power Systems 15.4 FirstElement Fuel Inc. 15.5 FuelCell Energy, Inc. 15.6 Hydrogenics Corporation 15.7 The Linde Group 15.8 Nel Hydrogen 15.9 Nuvera Fuel Cells 15.10 Praxair 15.11 Proton OnSite / SunHydro 15.11.1 Proton Onsite 15.11.2 SunHydro 16 Market Forecasts 16.1 Overview 16.2 Global Hydrogen Station Market 16.2.1 Hydrogen Station Deployments 16.2.2 Hydrogen Stations Capacity 16.2.3 Hydrogen Station Costs 16.3 Asia - Pacific Hydrogen Station Market 16.3.1 Hydrogen Station Deployments 16.3.2 Hydrogen Stations Capacity 16.3.3 Hydrogen Station Costs 16.4 Europe, Middle East and Africa 16.4.1 Hydrogen Station Deployments 16.4.2 Hydrogen Station Capacity 16.4.3 Hydrogen Station Costs 16.5 Americas 16.5.1 Hydrogen Station Deployments 16.5.2 Hydrogen Station Capacity 16.5.3 Hydrogen Station Costs 17 Conclusions 17.1 Hydrogen as a Fuel 17.2 Rollout of Fuel Cell Vehicles 17.3 Hydrogen Station Deployments 17.4 Funding Requirements 17.5 Customer Experience 17.6 Other Findings
By expanding the existing fuel cell hybrid battery to a high - energy battery, a substantial portion of the daily driving could be done directly without the overhead of hydrogen production.
Transportation policies that favor electric vehicles or even self - driving cars, for example, could someday lower emissions; in the energy sector, an increased focus on biofuels or hydrogen production could do the same; and in agriculture, slow release fertilizers could reduce nitrous oxide emissions.
a b c d e f g h i j k l m n o p q r s t u v w x y z