Sentences with phrase «human hormones relationship»

Not exact matches

Susan Amara, USA - «Regulation of transporter function and trafficking by amphetamines, Structure - function relationships in excitatory amino acid transporters (EAATs), Modulation of dopamine transporters (DAT) by GPCRs, Genetics and functional analyses of human trace amine receptors» Tom I. Bonner, USA (Past Core Member)- Genomics, G protein coupled receptors Michel Bouvier, Canada - Molecular Pharmacology of G protein - Coupled Receptors; Molecular mechanisms controlling the selectivity and efficacy of GPCR signalling Thomas Burris, USA - Nuclear Receptor Pharmacology and Drug Discovery William A. Catterall, USA (Past Core Member)- The Molecular Basis of Electrical Excitability Steven Charlton, UK - Molecular Pharmacology and Drug Discovery Moses Chao, USA - Mechanisms of Neurotophin Receptor Signaling Mark Coles, UK - Cellular differentiation, human embryonic stem cells, stromal cells, haematopoietic stem cells, organogenesis, lymphoid microenvironments, develomental immunology Steven L. Colletti, USA Graham L Collingridge, UK Philippe Delerive, France - Metabolic Research (diabetes, obesity, non-alcoholic fatty liver, cardio - vascular diseases, nuclear hormone receptor, GPCRs, kinases) Sir Colin T. Dollery, UK (Founder and Past Core Member) Richard M. Eglen, UK Stephen M. Foord, UK David Gloriam, Denmark - GPCRs, databases, computational drug design, orphan recetpors Gillian Gray, UK Debbie Hay, New Zealand - G protein - coupled receptors, peptide receptors, CGRP, Amylin, Adrenomedullin, Migraine, Diabetes / obesity Allyn C. Howlett, USA Franz Hofmann, Germany - Voltage dependent calcium channels and the positive inotropic effect of beta adrenergic stimulation; cardiovascular function of cGMP protein kinase Yu Huang, Hong Kong - Endothelial and Metabolic Dysfunction, and Novel Biomarkers in Diabetes, Hypertension, Dyslipidemia and Estrogen Deficiency, Endothelium - derived Contracting Factors in the Regulation of Vascular Tone, Adipose Tissue Regulation of Vascular Function in Obesity, Diabetes and Hypertension, Pharmacological Characterization of New Anti-diabetic and Anti-hypertensive Drugs, Hypotensive and antioxidant Actions of Biologically Active Components of Traditional Chinese Herbs and Natural Plants including Polypehnols and Ginsenosides Adriaan P. IJzerman, The Netherlands - G protein - coupled receptors; allosteric modulation; binding kinetics Michael F Jarvis, USA - Purines and Purinergic Receptors and Voltage-gated ion channel (sodium and calcium) pharmacology Pain mechanisms Research Reproducibility Bong - Kiun Kaang, Korea - G protein - coupled receptors; Glutamate receptors; Neuropsychiatric disorders Eamonn Kelly, Prof, UK - Molecular Pharmacology of G protein - coupled receptors, in particular opioid receptors, regulation of GPCRs by kinasis and arrestins Terry Kenakin, USA - Drug receptor pharmacodynamics, receptor theory Janos Kiss, Hungary - Neurodegenerative disorders, Alzheimer's disease Stefan Knapp, Germany - Rational design of highly selective inhibitors (so call chemical probes) targeting protein kinases as well as protein interaction inhibitors of the bromodomain family Andrew Knight, UK Chris Langmead, Australia - Drug discovery, GPCRs, neuroscience and analytical pharmacology Vincent Laudet, France (Past Core Member)- Evolution of the Nuclear Receptor / Ligand couple Margaret R. MacLean, UK - Serotonin, endothelin, estrogen, microRNAs and pulmonary hyperten Neil Marrion, UK - Calcium - activated potassium channels, neuronal excitability Fiona Marshall, UK - GPCR molecular pharmacology, structure and drug discovery Alistair Mathie, UK - Ion channel structure, function and regulation, pain and the nervous system Ian McGrath, UK - Adrenoceptors; autonomic transmission; vascular pharmacology Graeme Milligan, UK - Structure, function and regulation of G protein - coupled receptors Richard Neubig, USA (Past Core Member)- G protein signaling; academic drug discovery Stefan Offermanns, Germany - G protein - coupled receptors, vascular / metabolic signaling Richard Olsen, USA - Structure and function of GABA - A receptors; mode of action of GABAergic drugs including general anesthetics and ethanol Jean - Philippe Pin, France (Past Core Member)- GPCR - mGLuR - GABAB - structure function relationship - pharmacology - biophysics Helgi Schiöth, Sweden David Searls, USA - Bioinformatics Graeme Semple, USA - GPCR Medicinal Chemistry Patrick M. Sexton, Australia - G protein - coupled receptors Roland Staal, USA - Microglia and neuroinflammation in neuropathic pain and neurological disorders Bart Staels, France - Nuclear receptor signaling in metabolic and cardiovascular diseases Katerina Tiligada, Greece - Immunopharmacology, histamine, histamine receptors, hypersensitivity, drug allergy, inflammation Georg Terstappen, Germany - Drug discovery for neurodegenerative diseases with a focus on AD Mary Vore, USA - Activity and regulation of expression and function of the ATP - binding cassette (ABC) transporters
The benefits of human growth hormone therapy for men may be all encompassing including enhancing the physical aspects of the body, the emotional facets of the mind and the important sexual aspects to any healthy relationship.
This study studied the relationship between plasma level of insulin - like growth hormone I (IGF - I), changes in lean body mass and in adipose mass, and adverse side - effects during human growth hormone (HGH) treatment of elderly men who had low IGF - I levels.
2 - When insulin levels are low, Human Growth Hormone (HGH) is elevated (there is an inverse relationship between HGH and insulin).
Specification points covered are: Paper 2 Topic 1 (4.5 - homeostasis and response) 4.5.1 - Homeostasis (B5.1 lesson) 4.5.3.2 - Control of blood glucose concentration (B5.1 lesson) 4.5.2.1 - Structure and function (B5.2 lesson) Required practical 7 - plan and carry out an investigation into the effect of a factor on human reaction time (B5.2 lesson) 4.5.3.1 - Human endocrine system (B5.6 lesson) 4.5.3.4 - Hormones in human reproduction (B5.10 lesson) 4.5.3.5 - Contraception (B5.11 lesson) 4.5.3.6 - The use of hormones to treat infertility (HT only)(B5.12 lesson) 4.5.3.7 - Negative feedback (HT only)(B5.13 lesson) Paper 2 topic 2 (4.6 - Inheritance, variation and evolution) 4.6.1.1 - sexual and asexual reproduction (B6.1 lesson) 4.6.1.2 - Meiosis (B6.1 lesson) 4.6.1.4 - DNA and the genome (B6.3 lesson) 4.6.1.6 - Genetic inheritance (B6.5 lesson) 4.6.1.7 - Inherited disorders (B6.6 lesson) 4.6.1.8 - Sex determination (B6.5 lesson) 4.6.2.1 - Variation (B6.9 lesson) 4.6.2.2 - Evolution (B6.10 lesson) 4.6.2.3 - Selective breeding (B6.11 lesson) 4.6.2.4 - Genetic engineering (B6.11 lesson) 4.6.3.4 - Evidence for evolution (B6.16 lesson) 4.6.3.5 - Fossils (B6.16 lesson) 4.6.3.6 - Extinction (B6.16 lesson) 4.6.3.7 - Resistant bacteria (B6.17 lesson) 4.6.4.1 - classification of living organisms (B6.18 lesson) Paper 2 topic 3 (4.7 - Ecology 4.7.1.1 - Communities (B7.1 lesson) 4.7.1.2 - Abiotic factors (B7.1 lesson) 4.7.1.3 - Biotic factors (B7.1 lesson) 4.7.1.4 — Adaptations (B7.2 lesson) 4.7.2.1 - Levels of organisation (feeding relationships + predator - prey cycles)(B7.3 lesson) 4.7.2.1 - Levels of organisation (required practical 9 - population sizes)(B7.4 lesson) 4.7.2.2 - How materials are cycled (B7.5 lesson) 4.7.3.1 - Biodiversity (B7.7 lesson) 4.7.3.6 - Maintaining Biodiversity (B7.7 lesson) 4.7.3.2 - Waste management (B7.9 lesson) 4.7.3.3 - Land use (B7.9 lesson) 4.7.3.4 - Deforestation (B7.9 lesson) 4.7.3.5 - Global warming (B7.9 lehuman reaction time (B5.2 lesson) 4.5.3.1 - Human endocrine system (B5.6 lesson) 4.5.3.4 - Hormones in human reproduction (B5.10 lesson) 4.5.3.5 - Contraception (B5.11 lesson) 4.5.3.6 - The use of hormones to treat infertility (HT only)(B5.12 lesson) 4.5.3.7 - Negative feedback (HT only)(B5.13 lesson) Paper 2 topic 2 (4.6 - Inheritance, variation and evolution) 4.6.1.1 - sexual and asexual reproduction (B6.1 lesson) 4.6.1.2 - Meiosis (B6.1 lesson) 4.6.1.4 - DNA and the genome (B6.3 lesson) 4.6.1.6 - Genetic inheritance (B6.5 lesson) 4.6.1.7 - Inherited disorders (B6.6 lesson) 4.6.1.8 - Sex determination (B6.5 lesson) 4.6.2.1 - Variation (B6.9 lesson) 4.6.2.2 - Evolution (B6.10 lesson) 4.6.2.3 - Selective breeding (B6.11 lesson) 4.6.2.4 - Genetic engineering (B6.11 lesson) 4.6.3.4 - Evidence for evolution (B6.16 lesson) 4.6.3.5 - Fossils (B6.16 lesson) 4.6.3.6 - Extinction (B6.16 lesson) 4.6.3.7 - Resistant bacteria (B6.17 lesson) 4.6.4.1 - classification of living organisms (B6.18 lesson) Paper 2 topic 3 (4.7 - Ecology 4.7.1.1 - Communities (B7.1 lesson) 4.7.1.2 - Abiotic factors (B7.1 lesson) 4.7.1.3 - Biotic factors (B7.1 lesson) 4.7.1.4 — Adaptations (B7.2 lesson) 4.7.2.1 - Levels of organisation (feeding relationships + predator - prey cycles)(B7.3 lesson) 4.7.2.1 - Levels of organisation (required practical 9 - population sizes)(B7.4 lesson) 4.7.2.2 - How materials are cycled (B7.5 lesson) 4.7.3.1 - Biodiversity (B7.7 lesson) 4.7.3.6 - Maintaining Biodiversity (B7.7 lesson) 4.7.3.2 - Waste management (B7.9 lesson) 4.7.3.3 - Land use (B7.9 lesson) 4.7.3.4 - Deforestation (B7.9 lesson) 4.7.3.5 - Global warming (B7.9 leHuman endocrine system (B5.6 lesson) 4.5.3.4 - Hormones in human reproduction (B5.10 lesson) 4.5.3.5 - Contraception (B5.11 lesson) 4.5.3.6 - The use of hormones to treat infertility (HT only)(B5.12 lesson) 4.5.3.7 - Negative feedback (HT only)(B5.13 lesson) Paper 2 topic 2 (4.6 - Inheritance, variation and evolution) 4.6.1.1 - sexual and asexual reproduction (B6.1 lesson) 4.6.1.2 - Meiosis (B6.1 lesson) 4.6.1.4 - DNA and the genome (B6.3 lesson) 4.6.1.6 - Genetic inheritance (B6.5 lesson) 4.6.1.7 - Inherited disorders (B6.6 lesson) 4.6.1.8 - Sex determination (B6.5 lesson) 4.6.2.1 - Variation (B6.9 lesson) 4.6.2.2 - Evolution (B6.10 lesson) 4.6.2.3 - Selective breeding (B6.11 lesson) 4.6.2.4 - Genetic engineering (B6.11 lesson) 4.6.3.4 - Evidence for evolution (B6.16 lesson) 4.6.3.5 - Fossils (B6.16 lesson) 4.6.3.6 - Extinction (B6.16 lesson) 4.6.3.7 - Resistant bacteria (B6.17 lesson) 4.6.4.1 - classification of living organisms (B6.18 lesson) Paper 2 topic 3 (4.7 - Ecology 4.7.1.1 - Communities (B7.1 lesson) 4.7.1.2 - Abiotic factors (B7.1 lesson) 4.7.1.3 - Biotic factors (B7.1 lesson) 4.7.1.4 — Adaptations (B7.2 lesson) 4.7.2.1 - Levels of organisation (feeding relationships + predator - prey cycles)(B7.3 lesson) 4.7.2.1 - Levels of organisation (required practical 9 - population sizes)(B7.4 lesson) 4.7.2.2 - How materials are cycled (B7.5 lesson) 4.7.3.1 - Biodiversity (B7.7 lesson) 4.7.3.6 - Maintaining Biodiversity (B7.7 lesson) 4.7.3.2 - Waste management (B7.9 lesson) 4.7.3.3 - Land use (B7.9 lesson) 4.7.3.4 - Deforestation (B7.9 lesson) 4.7.3.5 - Global warming (B7.9Hormones in human reproduction (B5.10 lesson) 4.5.3.5 - Contraception (B5.11 lesson) 4.5.3.6 - The use of hormones to treat infertility (HT only)(B5.12 lesson) 4.5.3.7 - Negative feedback (HT only)(B5.13 lesson) Paper 2 topic 2 (4.6 - Inheritance, variation and evolution) 4.6.1.1 - sexual and asexual reproduction (B6.1 lesson) 4.6.1.2 - Meiosis (B6.1 lesson) 4.6.1.4 - DNA and the genome (B6.3 lesson) 4.6.1.6 - Genetic inheritance (B6.5 lesson) 4.6.1.7 - Inherited disorders (B6.6 lesson) 4.6.1.8 - Sex determination (B6.5 lesson) 4.6.2.1 - Variation (B6.9 lesson) 4.6.2.2 - Evolution (B6.10 lesson) 4.6.2.3 - Selective breeding (B6.11 lesson) 4.6.2.4 - Genetic engineering (B6.11 lesson) 4.6.3.4 - Evidence for evolution (B6.16 lesson) 4.6.3.5 - Fossils (B6.16 lesson) 4.6.3.6 - Extinction (B6.16 lesson) 4.6.3.7 - Resistant bacteria (B6.17 lesson) 4.6.4.1 - classification of living organisms (B6.18 lesson) Paper 2 topic 3 (4.7 - Ecology 4.7.1.1 - Communities (B7.1 lesson) 4.7.1.2 - Abiotic factors (B7.1 lesson) 4.7.1.3 - Biotic factors (B7.1 lesson) 4.7.1.4 — Adaptations (B7.2 lesson) 4.7.2.1 - Levels of organisation (feeding relationships + predator - prey cycles)(B7.3 lesson) 4.7.2.1 - Levels of organisation (required practical 9 - population sizes)(B7.4 lesson) 4.7.2.2 - How materials are cycled (B7.5 lesson) 4.7.3.1 - Biodiversity (B7.7 lesson) 4.7.3.6 - Maintaining Biodiversity (B7.7 lesson) 4.7.3.2 - Waste management (B7.9 lesson) 4.7.3.3 - Land use (B7.9 lesson) 4.7.3.4 - Deforestation (B7.9 lesson) 4.7.3.5 - Global warming (B7.9 lehuman reproduction (B5.10 lesson) 4.5.3.5 - Contraception (B5.11 lesson) 4.5.3.6 - The use of hormones to treat infertility (HT only)(B5.12 lesson) 4.5.3.7 - Negative feedback (HT only)(B5.13 lesson) Paper 2 topic 2 (4.6 - Inheritance, variation and evolution) 4.6.1.1 - sexual and asexual reproduction (B6.1 lesson) 4.6.1.2 - Meiosis (B6.1 lesson) 4.6.1.4 - DNA and the genome (B6.3 lesson) 4.6.1.6 - Genetic inheritance (B6.5 lesson) 4.6.1.7 - Inherited disorders (B6.6 lesson) 4.6.1.8 - Sex determination (B6.5 lesson) 4.6.2.1 - Variation (B6.9 lesson) 4.6.2.2 - Evolution (B6.10 lesson) 4.6.2.3 - Selective breeding (B6.11 lesson) 4.6.2.4 - Genetic engineering (B6.11 lesson) 4.6.3.4 - Evidence for evolution (B6.16 lesson) 4.6.3.5 - Fossils (B6.16 lesson) 4.6.3.6 - Extinction (B6.16 lesson) 4.6.3.7 - Resistant bacteria (B6.17 lesson) 4.6.4.1 - classification of living organisms (B6.18 lesson) Paper 2 topic 3 (4.7 - Ecology 4.7.1.1 - Communities (B7.1 lesson) 4.7.1.2 - Abiotic factors (B7.1 lesson) 4.7.1.3 - Biotic factors (B7.1 lesson) 4.7.1.4 — Adaptations (B7.2 lesson) 4.7.2.1 - Levels of organisation (feeding relationships + predator - prey cycles)(B7.3 lesson) 4.7.2.1 - Levels of organisation (required practical 9 - population sizes)(B7.4 lesson) 4.7.2.2 - How materials are cycled (B7.5 lesson) 4.7.3.1 - Biodiversity (B7.7 lesson) 4.7.3.6 - Maintaining Biodiversity (B7.7 lesson) 4.7.3.2 - Waste management (B7.9 lesson) 4.7.3.3 - Land use (B7.9 lesson) 4.7.3.4 - Deforestation (B7.9 lesson) 4.7.3.5 - Global warming (B7.9hormones to treat infertility (HT only)(B5.12 lesson) 4.5.3.7 - Negative feedback (HT only)(B5.13 lesson) Paper 2 topic 2 (4.6 - Inheritance, variation and evolution) 4.6.1.1 - sexual and asexual reproduction (B6.1 lesson) 4.6.1.2 - Meiosis (B6.1 lesson) 4.6.1.4 - DNA and the genome (B6.3 lesson) 4.6.1.6 - Genetic inheritance (B6.5 lesson) 4.6.1.7 - Inherited disorders (B6.6 lesson) 4.6.1.8 - Sex determination (B6.5 lesson) 4.6.2.1 - Variation (B6.9 lesson) 4.6.2.2 - Evolution (B6.10 lesson) 4.6.2.3 - Selective breeding (B6.11 lesson) 4.6.2.4 - Genetic engineering (B6.11 lesson) 4.6.3.4 - Evidence for evolution (B6.16 lesson) 4.6.3.5 - Fossils (B6.16 lesson) 4.6.3.6 - Extinction (B6.16 lesson) 4.6.3.7 - Resistant bacteria (B6.17 lesson) 4.6.4.1 - classification of living organisms (B6.18 lesson) Paper 2 topic 3 (4.7 - Ecology 4.7.1.1 - Communities (B7.1 lesson) 4.7.1.2 - Abiotic factors (B7.1 lesson) 4.7.1.3 - Biotic factors (B7.1 lesson) 4.7.1.4 — Adaptations (B7.2 lesson) 4.7.2.1 - Levels of organisation (feeding relationships + predator - prey cycles)(B7.3 lesson) 4.7.2.1 - Levels of organisation (required practical 9 - population sizes)(B7.4 lesson) 4.7.2.2 - How materials are cycled (B7.5 lesson) 4.7.3.1 - Biodiversity (B7.7 lesson) 4.7.3.6 - Maintaining Biodiversity (B7.7 lesson) 4.7.3.2 - Waste management (B7.9 lesson) 4.7.3.3 - Land use (B7.9 lesson) 4.7.3.4 - Deforestation (B7.9 lesson) 4.7.3.5 - Global warming (B7.9 lesson)
The relationship between missing sex hormones, diabetes, obesity, and bone strength is more studied in humans.
One study directly assessed the brain functioning of children in foster care using the popular method of examining levels of cortisol, the hormone produced in response to stress in humans.25, 26 Children who are exposed to high levels of stress show unusual patterns of cortisol production.27 Foster children exhibited unusually decreased or elevated levels of cortisol compared to children reared by their biological parents.28 Such findings are consistent with the literature, which points to the importance of the parent - child relationship in buffering the stress responses of children.
a b c d e f g h i j k l m n o p q r s t u v w x y z