Sentences with phrase «iron particles generated»

Iron particles generated by cities and industry are being dissolved by human - made air pollution and washed into the sea — potentially increasing the amount of greenhouse gases that the world's oceans can absorb, a new study suggests.

Not exact matches

Scientists have long believed that acids formed from human - generated pollution and natural emissions dissolve iron in airborne particles — increasing the amount of iron to the ocean — but have lacked direct evidence to prove this theory.
Certain particle compounds may directly generate ROS in vivo because of their surface chemistry (eg, metals, organic compounds, and semiquinones) or after bioactivation by cytochrome P450 systems (eg, polycyclic aromatic hydrocarbon conversion to quinones).6, 290 a, 290 b A particle surface or anions present on otherwise more inert particles may disrupt iron homeostasis in the lung and thereby also generate ROS via Fenton reactions.291 Other PM constituents may do so indirectly by the upregulation of endogenous cellular sources (eg, nicotinamide adenine dinucleotide phosphate [NADPH]-RRB- oxidase) 292,293 or by perturbing organelle function (eg, mitochondria) by taken - up PM components.261 Particle stimulation of irritant and afferent ANS fibers may also play a role in local and systemic oxidative stress formation.294 Given the rich antioxidant defenses in the lung fluid, secondarily generated oxidization products of endogenous molecules (eg, oxidized phospholipids, proteins) or a reduction in endogenous antioxidants per se may be responsible at least in part for the state of oxidative stress in the lungs (along with instigating the subsequent cellular responses) rather than ROS derived directly from PM and its constparticle compounds may directly generate ROS in vivo because of their surface chemistry (eg, metals, organic compounds, and semiquinones) or after bioactivation by cytochrome P450 systems (eg, polycyclic aromatic hydrocarbon conversion to quinones).6, 290 a, 290 b A particle surface or anions present on otherwise more inert particles may disrupt iron homeostasis in the lung and thereby also generate ROS via Fenton reactions.291 Other PM constituents may do so indirectly by the upregulation of endogenous cellular sources (eg, nicotinamide adenine dinucleotide phosphate [NADPH]-RRB- oxidase) 292,293 or by perturbing organelle function (eg, mitochondria) by taken - up PM components.261 Particle stimulation of irritant and afferent ANS fibers may also play a role in local and systemic oxidative stress formation.294 Given the rich antioxidant defenses in the lung fluid, secondarily generated oxidization products of endogenous molecules (eg, oxidized phospholipids, proteins) or a reduction in endogenous antioxidants per se may be responsible at least in part for the state of oxidative stress in the lungs (along with instigating the subsequent cellular responses) rather than ROS derived directly from PM and its constparticle surface or anions present on otherwise more inert particles may disrupt iron homeostasis in the lung and thereby also generate ROS via Fenton reactions.291 Other PM constituents may do so indirectly by the upregulation of endogenous cellular sources (eg, nicotinamide adenine dinucleotide phosphate [NADPH]-RRB- oxidase) 292,293 or by perturbing organelle function (eg, mitochondria) by taken - up PM components.261 Particle stimulation of irritant and afferent ANS fibers may also play a role in local and systemic oxidative stress formation.294 Given the rich antioxidant defenses in the lung fluid, secondarily generated oxidization products of endogenous molecules (eg, oxidized phospholipids, proteins) or a reduction in endogenous antioxidants per se may be responsible at least in part for the state of oxidative stress in the lungs (along with instigating the subsequent cellular responses) rather than ROS derived directly from PM and its constParticle stimulation of irritant and afferent ANS fibers may also play a role in local and systemic oxidative stress formation.294 Given the rich antioxidant defenses in the lung fluid, secondarily generated oxidization products of endogenous molecules (eg, oxidized phospholipids, proteins) or a reduction in endogenous antioxidants per se may be responsible at least in part for the state of oxidative stress in the lungs (along with instigating the subsequent cellular responses) rather than ROS derived directly from PM and its constituents.
a b c d e f g h i j k l m n o p q r s t u v w x y z