Sentences with phrase «sea ice prediction data»

Our sea ice prediction data sources come from the National Snow and Ice Data Center.

Not exact matches

Given that we now have several years more data, we can essentially «test» the IPCC predictions and we arrive at the conclusion (i.e., message 1) that the climate system is tracking the «worst case scenario» (or worse in the case of ice melt and sea - level rise) presented by the IPCC.
The data that Old Weather volunteer citizen scientists meticulously transcribe from the logbooks are used to drive climate and sea ice models to help understand changes and improve predictions.
PIOMAS has been run in a forward mode (and hence without data assimilation) to yield seasonal predictions for the sea ice outlook (Zhang et al. 2008) and has also provided input to statistical forecasts (Lindsay et al. 2008) and fully - coupled models.
This one at least is consistent with other data, like the rapid decline of Arctic sea ice, way ahead of any model predictions I've seen published prior to the decline.
Canadian Ice Service, 4.7, Multiple Methods As with CIS contributions in June 2009, 2010, and 2011, the 2012 forecast was derived using a combination of three methods: 1) a qualitative heuristic method based on observed end - of - winter arctic ice thicknesses and extents, as well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model, which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoIce Service, 4.7, Multiple Methods As with CIS contributions in June 2009, 2010, and 2011, the 2012 forecast was derived using a combination of three methods: 1) a qualitative heuristic method based on observed end - of - winter arctic ice thicknesses and extents, as well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model, which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoice thicknesses and extents, as well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model, which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoSea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model, which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoIce Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictosea ice predictoice predictors.
Canadian Ice Service, 4.7 (+ / - 0.2), Heuristic / Statistical (same as June) The 2015 forecast was derived by considering a combination of methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic ice thickness extents, as well as winter Surface Air Temperature, Sea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoIce Service, 4.7 (+ / - 0.2), Heuristic / Statistical (same as June) The 2015 forecast was derived by considering a combination of methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic ice thickness extents, as well as winter Surface Air Temperature, Sea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoice thickness extents, as well as winter Surface Air Temperature, Sea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoSea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictosea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictosea ice predictoice predictors.
Since current ice melt data could indicate variable climate trends and aren't necessarily part of an accelerating trend, the study warned that predictions of future sea - level rise should not be based on measurements of glacial loss» Daily Mail.
Canadian Ice Service; 5.0; Statistical As with Canadian Ice Service (CIS) contributions in June 2009 and June 2010, the 2011 forecast was derived using a combination of three methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic Multi-Year Ice (MYI) extents, as well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere, and sea ice predictoIce Service; 5.0; Statistical As with Canadian Ice Service (CIS) contributions in June 2009 and June 2010, the 2011 forecast was derived using a combination of three methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic Multi-Year Ice (MYI) extents, as well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere, and sea ice predictoIce Service (CIS) contributions in June 2009 and June 2010, the 2011 forecast was derived using a combination of three methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic Multi-Year Ice (MYI) extents, as well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere, and sea ice predictoIce (MYI) extents, as well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere, and sea ice predictoSea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere, and sea ice predictoIce Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere, and sea ice predictosea ice predictoice predictors.
Here's a prediction from 2007 where a climate scientist predicts that Arctic sea ice may disappear by 2013, saying that since his modelling didn't include the last couple of record lows in its training data,» you can argue that may be our projection of 2013 is already too conservative.»
These new sea ice proxy records are needed (1) to fully prove the scenarios of a succession from an extended ice shelf to polynya / open - water conditions (cf., Fig. 6), (2) to reconstruct in more detail the changes in sea ice cover for early, middle and late LIG intervals characterized by very different external forcings and related internal feedback mechanisms, and (3) to allow a more fundamental proxy data / modeling comparison that results in model improvements and better reproduction of the LIG climatic evolution and prediction of future climatic scenarios20, 21,22,23, 64.
The ensemble consists of seven members each of which uses a unique set of NCEP / NCAR atmospheric forcing fields from recent years, representing recent climate, such that ensemble member 1 uses 2005 NCEP / NCAR forcing, member 2 uses 2006 forcing..., and member 7 uses 2011 forcing... In addition, the recently available IceBridge and helicopter - based electromagnetic (HEM) ice thickness quicklook data are assimilated into the initial 12 - category sea ice thickness distribution fields in order to improve the initial conditions for the predictions.
Canadian Ice Service, 4.7 (± 0.2), Heuristic / Statistical (same as June) The 2015 forecast was derived by considering a combination of methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic ice thickness extents, as well as winter Surface Air Temperature, Sea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoIce Service, 4.7 (± 0.2), Heuristic / Statistical (same as June) The 2015 forecast was derived by considering a combination of methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic ice thickness extents, as well as winter Surface Air Temperature, Sea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoice thickness extents, as well as winter Surface Air Temperature, Sea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoSea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictosea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictosea ice predictoice predictors.
GFDL NOAA (Msadek et al.), 4.82 (4.33 - 5.23), Modeling Our prediction for the September - averaged Arctic sea ice extent is 4.82 million square kilometers, with an uncertainty range going between 4.33 and 5.23 million km2 Our estimate is based on the GFDL CM2.1 ensemble forecast system in which both the ocean and atmosphere are initialized on August 1 using a coupled data assimilation system.
CAS = Commission for Atmospheric Sciences CMDP = Climate Metrics and Diagnostic Panel CMIP = Coupled Model Intercomparison Project DAOS = Working Group on Data Assimilation and Observing Systems GASS = Global Atmospheric System Studies panel GEWEX = Global Energy and Water Cycle Experiment GLASS = Global Land - Atmosphere System Studies panel GOV = Global Ocean Data Assimilation Experiment (GODAE) Ocean View JWGFVR = Joint Working Group on Forecast Verification Research MJO - TF = Madden - Julian Oscillation Task Force PDEF = Working Group on Predictability, Dynamics and Ensemble Forecasting PPP = Polar Prediction Project QPF = Quantitative precipitation forecast S2S = Subseasonal to Seasonal Prediction Project SPARC = Stratospheric Processes and their Role in Climate TC = Tropical cyclone WCRP = World Climate Research Programme WCRP Grand Science Challenges • Climate Extremes • Clouds, Circulation and Climate Sensitivity • Melting Ice and Global Consequences • Regional Sea - Ice Change and Coastal Impacts • Water Availability WCRP JSC = Joint Scientific Committee WGCM = Working Group on Coupled Modelling WGSIP = Working Group on Subseasonal to Interdecadal Prediction WWRP = World Weather Research Programme YOPP = Year of Polar Prediction
Raw model sea ice concentration data was processed using a simple linear regression model and satellite derived ice extent to produce bias corrected predictions.
Ionita and Grosfeld (IUP Bremen Data), 4.25 (3.53 - 4.97), Statistical The forecast scheme for the September sea ice extent is based on a methodology similar to one used for the seasonal prediction of river streamflow (Ionita et al., 2008, 2014).
As with previous CIS contributions, the 2016 forecast was derived by considering a combination of methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic ice thickness / extent, as well as winter surface air temperature, spring ice conditions and the summer temperature forecast; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent time - series into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictors.
The prediction model is obtained by data - adaptive decomposition and inverse modeling of Multisensor Analyzed Sea Ice Extent — Northern Hemisphere (MASIE - NH) dataset.
Our prediction is based on the GFDL - FLOR ensemble forecast system, which is a fully - coupled atmosphere - land - ocean - sea ice model initialized using a coupled data assimilation system.
SIPN welcomes pre-season contributions with predictions, data, field observations, or comments on sea ice conditions that might include:
The two - day FAMOS workshop will include sessions on 2017 sea ice highlights and sea ice / ocean predictions, reports of working groups conducting collaborative projects, large - scale arctic climate modeling (ice - ocean, regional coupled, global coupled), small (eddies) and very small (mixing) processes and their representation and / or parameterization in models, and new hypotheses, data sets, intriguing findings, proposals for new experiments and plans for 2018 FAMOS special volume of publications.
So far, the Antarctic is not following the IPCC prediction (or projection), but the late - summer Arctic sea ice seems headed for disappearing by the latter part of the 21st century, as you and I have both extrapolated, using the most recent data.
IPCC Predictions For Ice Melt, Sea Level Rise Lower Than Observations Then there is the fact that when the IPCC reanalyzes the data — as Climate Progress urges them to do for all sea level rise and ice melt projections — the revised predictions may very well be higher than originallPredictions For Ice Melt, Sea Level Rise Lower Than Observations Then there is the fact that when the IPCC reanalyzes the data — as Climate Progress urges them to do for all sea level rise and ice melt projections — the revised predictions may very well be higher than originally expectIce Melt, Sea Level Rise Lower Than Observations Then there is the fact that when the IPCC reanalyzes the data — as Climate Progress urges them to do for all sea level rise and ice melt projections — the revised predictions may very well be higher than originally expectSea Level Rise Lower Than Observations Then there is the fact that when the IPCC reanalyzes the data — as Climate Progress urges them to do for all sea level rise and ice melt projections — the revised predictions may very well be higher than originally expectsea level rise and ice melt projections — the revised predictions may very well be higher than originally expectice melt projections — the revised predictions may very well be higher than originallpredictions may very well be higher than originally expected.
The Sea Ice Prediction Network (SIPN) announces a call for Sea Ice Outlook (SIO) contributions to the June report (based on May data): - The firm submission deadline is 6:00 p.m. (AKDT) on Friday, 12 June 2015.
a b c d e f g h i j k l m n o p q r s t u v w x y z