Sentences with phrase «as nonzero»

But even when it breaks down there are all sorts of reasons why a couple could benefit by continuing to cooperate, and treating their divorce, too, as nonzero sum.

Not exact matches

Seeing as Camargo and Tucker have nonzero chances of turning into pumpkins and Flaherty and Markakis are what they are, it doesn't hurt to have backup options.
As it turns out, quantum mechanical formulas predict a slim (but nonzero) chance of the cosmic egg universe collapsing to zero size, at which point the erstwhile universe would completely disappear.
Since seawater absorption is nonzero at many wavelengths, increased atmospheric back - radiation due to a heightened greenhouse gases would inevitably warm the ocean, just as it warms the land.
Before allowing the temperature to respond, we can consider the forcing at the tropopause (TRPP) and at TOA, both reductions in net upward fluxes (though at TOA, the net upward LW flux is simply the OLR); my point is that even without direct solar heating above the tropopause, the forcing at TOA can be less than the forcing at TRPP (as explained in detail for CO2 in my 348, but in general, it is possible to bring the net upward flux at TRPP toward zero but even with saturation at TOA, the nonzero skin temperature requires some nonzero net upward flux to remain — now it just depends on what the net fluxes were before we made the changes, and whether the proportionality of forcings at TRPP and TOA is similar if the effect has not approached saturation at TRPP); the forcing at TRPP is the forcing on the surface + troposphere, which they must warm up to balance, while the forcing difference between TOA and TRPP is the forcing on the stratosphere; if the forcing at TRPP is larger than at TOA, the stratosphere must cool, reducing outward fluxes from the stratosphere by the same total amount as the difference in forcings between TRPP and TOA.
Trends as a function of CSD, Saturation: If the temperature varies monotonically over the distance from which most of the radiation reaching that level is emitted, then increasing the CSD will bring the upward and downward fluxes and intensities (at a given angle) toward the same value, reducing the net intensities and fluxes, until eventually they approach zero (or a nonzero saturation value at TOA).
In general, so long as there is some solar heating beneath some level, there must be a net LW + convective heat flux upward at that level to balance it in equilibrium; convection tends to require some nonzero temperature decline with height, and a net upward LW flux requires either that the temperature declines with height on the scale of photon paths (from emission to absorption), or else requires at least a partial «veiw» of space, which can be blocked by increasing optical thickness above that level.
The corresponding working quasilinear wave equation for the barotropic azonal stream function Ψm ′ of the forced waves with m = 6, 7, and 8 (m waves) with nonzero right - hand side (forcing + eddy friction) yields (34) u˜ ∂ ∂ x (∂ 2Ψm ′ ∂ x2 + ∂ 2Ψm ′ ∂ y2) + β˜ ∂ Ψm ′ ∂ x = 2Ω sin ϕ cos2 ϕT˜u˜ ∂ Tm ′ ∂ x − 2Ω sin ϕcos2 ϕHκu˜ ∂ hor, m ∂ x − (kha2 + kzH2)(∂ 2Ψm ′ ∂ x2 + ∂ 2Ψm ′ ∂ y2), [S3] where x = aλ and y = a ln -LSB-(1 + sin ϕ) / cos ϕ] are the coordinates of the Mercator projection of Earth's sphere, with λ as the longitude, H is the characteristic value of the atmospheric density vertical scale, T˜ is a constant reference temperature at the EBL, Tm ′ is the m component of azonal temperature at this level, u˜ = u ¯ / cos ϕ, κ is the ratio of the zonally averaged module of the geostrophic wind at the top of the PBL to that at the EBL (53), hor, m is the m component of the large - scale orography height, and kh and kz are the horizontal and vertical eddy diffusion coefficients.
However, the point is simply this: As long as you have an IR - absorbing atmosphere that is at a nonzero temperature, the earth's surface will have to be at a warmer temperature (in order to radiate away the energy that it receives from the sun) than it would be if the atmosphere did not absorb any of the IR radiation that the earth emitAs long as you have an IR - absorbing atmosphere that is at a nonzero temperature, the earth's surface will have to be at a warmer temperature (in order to radiate away the energy that it receives from the sun) than it would be if the atmosphere did not absorb any of the IR radiation that the earth emitas you have an IR - absorbing atmosphere that is at a nonzero temperature, the earth's surface will have to be at a warmer temperature (in order to radiate away the energy that it receives from the sun) than it would be if the atmosphere did not absorb any of the IR radiation that the earth emits.
a b c d e f g h i j k l m n o p q r s t u v w x y z