Sentences with phrase «as ocean temperature anomalies»

Atmospheric circulation, temperature, water vapour, and clouds are examined; as well as ocean temperature anomalies, currents, and behaviour are discussed.

Not exact matches

The westerlies in the Northern Hemisphere, which increased from the 1960s to the 1990s but which have since returned to about normal as part of NAO and NAM changes, alter the flow from oceans to continents and are a major cause of the observed changes in winter storm tracks and related patterns of precipitation and temperature anomalies, especially over Europe.
During El Nino events the ocean circulation changes in such a way as to cause a large and temporary positive sea surface temperature anomaly in the tropical Pacific.
All siding with its infinite growth paradigm, so I'm not surprised to see you writing counter-pieces to the harsh truth, which, as it stands, is that we have a pretty much dead and severely warming ocean, daily record - breaking jet - stream related weather incidents, which in turn are caused by polar temperature anomalies of +20 C as of late.
McIntyre has a new post where he tries to rescue the previous «projections» — but he confuses the changes in HadSST (ocean temperatures, which he is plotting) and the changes in HadCRUT3 (the global surface air temperature anomaly) which is what his projection was for (as can be seen in the figures in the main post).
As far as I can see you got the tied for 10th highest GISTemp anomaly part right (I assume you have the Land - Ocean Temperature Index in mind, not the land only numbers) but my spreadsheet disagrees with your claim that the average anomaly for 2013 to date would put it in 3rd place — I get 9tAs far as I can see you got the tied for 10th highest GISTemp anomaly part right (I assume you have the Land - Ocean Temperature Index in mind, not the land only numbers) but my spreadsheet disagrees with your claim that the average anomaly for 2013 to date would put it in 3rd place — I get 9tas I can see you got the tied for 10th highest GISTemp anomaly part right (I assume you have the Land - Ocean Temperature Index in mind, not the land only numbers) but my spreadsheet disagrees with your claim that the average anomaly for 2013 to date would put it in 3rd place — I get 9th.
England et al. suggest that the recent Pacific Ocean surface temperature anomalies are related to a strengthening of Pacific trade winds in the past two decades, and that warming is likely to accelerate as the trade wind anomaly abates.
Canadian Ice Service, 4.7, Multiple Methods As with CIS contributions in June 2009, 2010, and 2011, the 2012 forecast was derived using a combination of three methods: 1) a qualitative heuristic method based on observed end - of - winter arctic ice thicknesses and extents, as well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model, which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictorAs with CIS contributions in June 2009, 2010, and 2011, the 2012 forecast was derived using a combination of three methods: 1) a qualitative heuristic method based on observed end - of - winter arctic ice thicknesses and extents, as well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model, which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoras well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model, which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoras an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model, which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictors.
Canadian Ice Service, 4.7 (+ / - 0.2), Heuristic / Statistical (same as June) The 2015 forecast was derived by considering a combination of methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic ice thickness extents, as well as winter Surface Air Temperature, Sea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictors.
Third, note how the sea surface temperature anomalies in the Western Pacific (and East Indian Ocean) continue to rise as the La Niña event strengthens.
to be consistent, either we should have 100 points measuring the temperature on a specific hour of the day on mountains and in the ocean, and no average world temperature, or we should do the same with CO2, measure high for the day, low for the day, average, and make a global average from many regions, and then define an anomaly on the same interval as the temperature anomaly in order to be consistent.
Some processes arise through interactions with other parts of the climate system such as the ocean (for example as manifested through sea surface temperature anomalies), sea ice anomalies, snow cover anomalies as well as through coupling to the circulation in the stratosphere.
Canadian Ice Service; 5.0; Statistical As with Canadian Ice Service (CIS) contributions in June 2009 and June 2010, the 2011 forecast was derived using a combination of three methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic Multi-Year Ice (MYI) extents, as well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere, and sea ice predictorAs with Canadian Ice Service (CIS) contributions in June 2009 and June 2010, the 2011 forecast was derived using a combination of three methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic Multi-Year Ice (MYI) extents, as well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere, and sea ice predictoras well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere, and sea ice predictoras an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere, and sea ice predictors.
Ocean currents and weather have as much to do with Artic ice as temperatures, but UAH for 60 - 85N shows increasing temps from 1991 to 2007, and generally decreasing temp anomaly since.
«The last century stands out as the anomaly in this record of global temperature since the end of the last ice age,» says Candace Major, program director in the National Science Foundation's (NSF) Division of Ocean Sciences.
Any discussion on that webpage you linked... https://www.ncdc.noaa.gov/monitoring-references/faq/anomalies.php... regarding their preference for anomalies has to do with land surface, not sea surface, temperatures, which is why their land surface temperature data and consequently their combined land + ocean data are presented as anomalies.
I'm very convinced that the physical process of global warming is continuing, which appears as a statistically significant increase of the global surface and tropospheric temperature anomaly over a time scale of about 20 years and longer and also as trends in other climate variables (e.g., global ocean heat content increase, Arctic and Antarctic ice decrease, mountain glacier decrease on average and others), and I don't see any scientific evidence according to which this trend has been broken, recently.
Strong, localized sea surface temperature anomalies may reveal that an ocean current, such as the Gulf Stream Current off the east coast of the United States, has veered off its usual path for a time or is stronger or weaker than usual.
To clarify, land temperature anomalies are recorded as surface air temperature, but ocean temperature records are a more complex function that I believe also incorporates data from the water surface itself.
Over ocean stretches with a positive SST anomaly air convection is higher (as the temperature difference between the warm sea surface and the cool air higher up in the troposphere is greater), so a higher likelihood for the formation of depressions exists and more precipitation is to be expected.
Canadian Ice Service, 4.7 (± 0.2), Heuristic / Statistical (same as June) The 2015 forecast was derived by considering a combination of methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic ice thickness extents, as well as winter Surface Air Temperature, Sea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictors.
The best way to envision the relation between ENSO and precipitation over East Africa is to regard the Indian Ocean as a mirror of the Pacific Ocean sea surface temperature anomalies [much like the Western Hemisphere Warm Pool creates such a SST mirror with the Atlantic Ocean too]: during a La Niña episode, waters in the eastern Pacific are relatively cool as strong trade winds blow the tropically Sun - warmed waters far towards the west.
Step 3 involves application of a spatial analysis technique (empirical orthogonal teleconnections, EOTs) to merge and smooth the ocean and land surface temperature fields and provide these merged fields as anomaly fields for ocean, land and global temperatures.
Environmental variables estimated over larger spatial and temporal scales included the upwelling index (UI) for 48 ° N, 125 ° W (http://www.pfeg.noaa.gov), an indicator of upwelling strength based on wind stress measurements, as well as the Pacific Decadal Oscillation (PDO, http://jisao.washington.edu/pdo/PDO.latest), a composite indicator of ocean temperature anomalies [33], seawater temperature from Buoy 46041 ∼ 50 km to the southwest from Tatoosh (www.ndbc.noaa.gov), and remote sensing of chl a (SeaWiFS, AquaModis).
Behavior of the sea ice over the past winter and the spring and the large positive temperature anomalies in the Arctic (as high as 20 degrees C over large regions in the past winter) suggest that an extent near that of the 2012 minimum may occur again if there is large export of sea ice out to the Atlantic Ocean via the Fram Strait.
Precipitation in the Desert Southwest correlates significantly with solar irradiance lagged 3 and 5 years, which suggests a link with ocean - water temperature anomalies transported by the Equatorial Countercurrent as well as the North Pacific Gyre.
Overall the global temperature anomaly is about 0.8 C which is derived as a 70/30 ocean / land split.
As I understand it global temperatures are calculated as anomalies, thus removing seasonal swings, but that Heat Content is not, Now our dear planet has an elliptical orbit and is sometimes closer to the sun that others; sure, the shape of the land and oceans doesn't mean that the amount of incoming solar radiation falling on the oceans follows the Earths orbit, but it should be possible to work out the amount of incoming solar radiation each quarteAs I understand it global temperatures are calculated as anomalies, thus removing seasonal swings, but that Heat Content is not, Now our dear planet has an elliptical orbit and is sometimes closer to the sun that others; sure, the shape of the land and oceans doesn't mean that the amount of incoming solar radiation falling on the oceans follows the Earths orbit, but it should be possible to work out the amount of incoming solar radiation each quarteas anomalies, thus removing seasonal swings, but that Heat Content is not, Now our dear planet has an elliptical orbit and is sometimes closer to the sun that others; sure, the shape of the land and oceans doesn't mean that the amount of incoming solar radiation falling on the oceans follows the Earths orbit, but it should be possible to work out the amount of incoming solar radiation each quarter.
... then why do the vertical mean temperature anomalies (NODC 0 - 2000 meter data) of the Pacific Ocean as a whole and of the North Atlantic fail to show any warming over the past decade, a period when ARGO floats have measured subsurface temperatures, providing reasonably complete coverage of the global oceans?
We find that over a wide range of values of diapycnal diffusivity and Southern Ocean winds, and with a variety of changes in surface boundary conditions, the spatial patterns of ocean temperature anomaly are nearly always determined as much or more by the existing heat reservoir redistribution than by the nearly passive uptake of temperature due to changes in the surface boundary conditOcean winds, and with a variety of changes in surface boundary conditions, the spatial patterns of ocean temperature anomaly are nearly always determined as much or more by the existing heat reservoir redistribution than by the nearly passive uptake of temperature due to changes in the surface boundary conditocean temperature anomaly are nearly always determined as much or more by the existing heat reservoir redistribution than by the nearly passive uptake of temperature due to changes in the surface boundary conditions.
a b c d e f g h i j k l m n o p q r s t u v w x y z