Sentences with phrase «as sodium ions»

Blood and other body fluids contain thousands of different substances, such as sodium ions, hormones, and drugs, to name just a few.

Not exact matches

But the native language of biology is positive: its building blocks are protons and positively charged ions such as potassium, sodium and calcium.
Scientists previously thought ions — charged particles such as sodium or chloride, which bond to make salt — got buried in bodies of water.
On the basis of this selective permeability, ion channels are classified as potassium channels, sodium channels, etc..
The technique of using sodium ions in the body as a biomarker for imaging is very challenging because of the lower detectability of the sodium signal in biological tissue by currently available MRI scanners.
When, however, an ionic compound such as sodium chloride (NaCl) dissolves in water, the sodium chloride lattice dissociates into separate ions which are solvated (wrapped) with a coating of water molecules.
The researchers also found that the procedure outlined for Li - ion batteries is equally valid for other metal - ion batteries, such as sodium - ion or magnesium - ion batteries.
Researchers have known for decades that some microorganisms, such as single - celled green algae, have proteins that respond to light by opening a channel in the microbe's membranes, allowing the passage of electrically charged ions (such as calcium and sodium).
In this case, the array of sensors was formed of 21 ion - selective electrodes, including some with response to cations (ammonium, sodium), others with response to anions (nitrate, chloride, etc.), as well as electrodes with generic (unspecified) response to the varieties considered.
TRPV4 is an ion channel, a gateway in the cell membrane that rapidly lets in positively charged ions such as calcium and sodium.
Combined with the fact that human skin holds more than 100 times as much sodium than most other ions, led the researchers to believe that the body's sodium regulators were key components.
«However, as we encountered problems and found solutions, we gained additional insight on the processes, the role of water molecules and differences between sodium and chloride ions
Results indicate that the sodium ion - insertion capacity of copper sulfide is as much as 1.5 times that of lithium ions for graphite.
Some of the electronic charge on the chloride ion (Cl --RRB- ends up on the water molecules in the first solvation shells around the chloride and sodium ions, with the waters around sodium being the most negative — the waters effectively act as an electronic sink.
Susan Amara, USA - «Regulation of transporter function and trafficking by amphetamines, Structure - function relationships in excitatory amino acid transporters (EAATs), Modulation of dopamine transporters (DAT) by GPCRs, Genetics and functional analyses of human trace amine receptors» Tom I. Bonner, USA (Past Core Member)- Genomics, G protein coupled receptors Michel Bouvier, Canada - Molecular Pharmacology of G protein - Coupled Receptors; Molecular mechanisms controlling the selectivity and efficacy of GPCR signalling Thomas Burris, USA - Nuclear Receptor Pharmacology and Drug Discovery William A. Catterall, USA (Past Core Member)- The Molecular Basis of Electrical Excitability Steven Charlton, UK - Molecular Pharmacology and Drug Discovery Moses Chao, USA - Mechanisms of Neurotophin Receptor Signaling Mark Coles, UK - Cellular differentiation, human embryonic stem cells, stromal cells, haematopoietic stem cells, organogenesis, lymphoid microenvironments, develomental immunology Steven L. Colletti, USA Graham L Collingridge, UK Philippe Delerive, France - Metabolic Research (diabetes, obesity, non-alcoholic fatty liver, cardio - vascular diseases, nuclear hormone receptor, GPCRs, kinases) Sir Colin T. Dollery, UK (Founder and Past Core Member) Richard M. Eglen, UK Stephen M. Foord, UK David Gloriam, Denmark - GPCRs, databases, computational drug design, orphan recetpors Gillian Gray, UK Debbie Hay, New Zealand - G protein - coupled receptors, peptide receptors, CGRP, Amylin, Adrenomedullin, Migraine, Diabetes / obesity Allyn C. Howlett, USA Franz Hofmann, Germany - Voltage dependent calcium channels and the positive inotropic effect of beta adrenergic stimulation; cardiovascular function of cGMP protein kinase Yu Huang, Hong Kong - Endothelial and Metabolic Dysfunction, and Novel Biomarkers in Diabetes, Hypertension, Dyslipidemia and Estrogen Deficiency, Endothelium - derived Contracting Factors in the Regulation of Vascular Tone, Adipose Tissue Regulation of Vascular Function in Obesity, Diabetes and Hypertension, Pharmacological Characterization of New Anti-diabetic and Anti-hypertensive Drugs, Hypotensive and antioxidant Actions of Biologically Active Components of Traditional Chinese Herbs and Natural Plants including Polypehnols and Ginsenosides Adriaan P. IJzerman, The Netherlands - G protein - coupled receptors; allosteric modulation; binding kinetics Michael F Jarvis, USA - Purines and Purinergic Receptors and Voltage-gated ion channel (sodium and calcium) pharmacology Pain mechanisms Research Reproducibility Bong - Kiun Kaang, Korea - G protein - coupled receptors; Glutamate receptors; Neuropsychiatric disorders Eamonn Kelly, Prof, UK - Molecular Pharmacology of G protein - coupled receptors, in particular opioid receptors, regulation of GPCRs by kinasis and arrestins Terry Kenakin, USA - Drug receptor pharmacodynamics, receptor theory Janos Kiss, Hungary - Neurodegenerative disorders, Alzheimer's disease Stefan Knapp, Germany - Rational design of highly selective inhibitors (so call chemical probes) targeting protein kinases as well as protein interaction inhibitors of the bromodomain family Andrew Knight, UK Chris Langmead, Australia - Drug discovery, GPCRs, neuroscience and analytical pharmacology Vincent Laudet, France (Past Core Member)- Evolution of the Nuclear Receptor / Ligand couple Margaret R. MacLean, UK - Serotonin, endothelin, estrogen, microRNAs and pulmonary hyperten Neil Marrion, UK - Calcium - activated potassium channels, neuronal excitability Fiona Marshall, UK - GPCR molecular pharmacology, structure and drug discovery Alistair Mathie, UK - Ion channel structure, function and regulation, pain and the nervous system Ian McGrath, UK - Adrenoceptors; autonomic transmission; vascular pharmacology Graeme Milligan, UK - Structure, function and regulation of G protein - coupled receptors Richard Neubig, USA (Past Core Member)- G protein signaling; academic drug discovery Stefan Offermanns, Germany - G protein - coupled receptors, vascular / metabolic signaling Richard Olsen, USA - Structure and function of GABA - A receptors; mode of action of GABAergic drugs including general anesthetics and ethanol Jean - Philippe Pin, France (Past Core Member)- GPCR - mGLuR - GABAB - structure function relationship - pharmacology - biophysics Helgi Schiöth, Sweden David Searls, USA - Bioinformatics Graeme Semple, USA - GPCR Medicinal Chemistry Patrick M. Sexton, Australia - G protein - coupled receptors Roland Staal, USA - Microglia and neuroinflammation in neuropathic pain and neurological disorders Bart Staels, France - Nuclear receptor signaling in metabolic and cardiovascular diseases Katerina Tiligada, Greece - Immunopharmacology, histamine, histamine receptors, hypersensitivity, drug allergy, inflammation Georg Terstappen, Germany - Drug discovery for neurodegenerative diseases with a focus on AD Mary Vore, USA - Activity and regulation of expression and function of the ATP - binding cassette (ABC) transportion channel (sodium and calcium) pharmacology Pain mechanisms Research Reproducibility Bong - Kiun Kaang, Korea - G protein - coupled receptors; Glutamate receptors; Neuropsychiatric disorders Eamonn Kelly, Prof, UK - Molecular Pharmacology of G protein - coupled receptors, in particular opioid receptors, regulation of GPCRs by kinasis and arrestins Terry Kenakin, USA - Drug receptor pharmacodynamics, receptor theory Janos Kiss, Hungary - Neurodegenerative disorders, Alzheimer's disease Stefan Knapp, Germany - Rational design of highly selective inhibitors (so call chemical probes) targeting protein kinases as well as protein interaction inhibitors of the bromodomain family Andrew Knight, UK Chris Langmead, Australia - Drug discovery, GPCRs, neuroscience and analytical pharmacology Vincent Laudet, France (Past Core Member)- Evolution of the Nuclear Receptor / Ligand couple Margaret R. MacLean, UK - Serotonin, endothelin, estrogen, microRNAs and pulmonary hyperten Neil Marrion, UK - Calcium - activated potassium channels, neuronal excitability Fiona Marshall, UK - GPCR molecular pharmacology, structure and drug discovery Alistair Mathie, UK - Ion channel structure, function and regulation, pain and the nervous system Ian McGrath, UK - Adrenoceptors; autonomic transmission; vascular pharmacology Graeme Milligan, UK - Structure, function and regulation of G protein - coupled receptors Richard Neubig, USA (Past Core Member)- G protein signaling; academic drug discovery Stefan Offermanns, Germany - G protein - coupled receptors, vascular / metabolic signaling Richard Olsen, USA - Structure and function of GABA - A receptors; mode of action of GABAergic drugs including general anesthetics and ethanol Jean - Philippe Pin, France (Past Core Member)- GPCR - mGLuR - GABAB - structure function relationship - pharmacology - biophysics Helgi Schiöth, Sweden David Searls, USA - Bioinformatics Graeme Semple, USA - GPCR Medicinal Chemistry Patrick M. Sexton, Australia - G protein - coupled receptors Roland Staal, USA - Microglia and neuroinflammation in neuropathic pain and neurological disorders Bart Staels, France - Nuclear receptor signaling in metabolic and cardiovascular diseases Katerina Tiligada, Greece - Immunopharmacology, histamine, histamine receptors, hypersensitivity, drug allergy, inflammation Georg Terstappen, Germany - Drug discovery for neurodegenerative diseases with a focus on AD Mary Vore, USA - Activity and regulation of expression and function of the ATP - binding cassette (ABC) transportIon channel structure, function and regulation, pain and the nervous system Ian McGrath, UK - Adrenoceptors; autonomic transmission; vascular pharmacology Graeme Milligan, UK - Structure, function and regulation of G protein - coupled receptors Richard Neubig, USA (Past Core Member)- G protein signaling; academic drug discovery Stefan Offermanns, Germany - G protein - coupled receptors, vascular / metabolic signaling Richard Olsen, USA - Structure and function of GABA - A receptors; mode of action of GABAergic drugs including general anesthetics and ethanol Jean - Philippe Pin, France (Past Core Member)- GPCR - mGLuR - GABAB - structure function relationship - pharmacology - biophysics Helgi Schiöth, Sweden David Searls, USA - Bioinformatics Graeme Semple, USA - GPCR Medicinal Chemistry Patrick M. Sexton, Australia - G protein - coupled receptors Roland Staal, USA - Microglia and neuroinflammation in neuropathic pain and neurological disorders Bart Staels, France - Nuclear receptor signaling in metabolic and cardiovascular diseases Katerina Tiligada, Greece - Immunopharmacology, histamine, histamine receptors, hypersensitivity, drug allergy, inflammation Georg Terstappen, Germany - Drug discovery for neurodegenerative diseases with a focus on AD Mary Vore, USA - Activity and regulation of expression and function of the ATP - binding cassette (ABC) transporters
Mutations for mammoth hemoglobin, extra hair growth, fat production, down to nuanced climate adaptations such as slightly altered sodium ion channels in cell membranes have already been engineered into fibroblast cell lines.
The data include soluble ions (sodium and non-sea-salt sulfate) and dust particle concentrations, as well as major oxide geochemistry of tephra grains isolated from snow samples.
Moini, M., Jones, B. L., Rogers, R. M. & Jiang, L. Sodium trifluoroacetate as a tune / calibration compound for positive - and negative - ion electrospray ionization mass spectrometry in the mass range of 100 — 4000 Da.
Excessive urination also leads to a loss of ions, such as sodium, potassium and magnesium etc. which are required by the body cells to perform properly.
Micro-filtration is a natural non-chemical process which employs high tech ceramic filters, unlike ion exchange, which involves the use of chemicals such as hydrochloric acid and sodium hydroxide.
Because it means water absorption is heavily dependent on osmotic gradients - if the gut is filled with large quantities of mineral ions (particularly sodium), free glucose, etc., water will remain in the gut to serve as a buffer.
Most other nutrients, on the other hand, are more actively transported - there are certain receptors lining those intestinal cells (cells called enterocytes, if anybody cares) that pull salts, sugars, amino acids, etc. through the intestinal lining into the cells in exchange for other compounds (e.g. they'll pull in a hydrogen ion at the same time as an amino acid, then exchange the new hydrogen atom for a sodium molecule later.)
The kidneys regulate the concentration of ions such as sodium, potassium, phosphate and hydrogen.
As an electrolyte, potassium is a positive charged ion that must maintain a certain concentration (about 30 times higher inside than outside your cells) in order to carry out its functions, which includes interacting with sodium to help control nerve impulse transmission, muscle contraction and heart function.
One of the main functions of the kidneys is to regulate both the volume and the composition of body fluid, including electrolytes, such as sodium, potassium, and chloride ions.
For example, if a magnetic field is strong enough to attract or repel ions such as sodium and chloride in the blood, these ions may eventually encounter the walls of the blood vessels, move more rapidly, and cause an increase in tissue temperature or an increase in blood flow.
The concept for Sodium - ion was established in the 1980's, but at the time, lithium was preferred to sodium as the material of choice and it has been widely used ever since for portable electronic devices such as tablets, laptops and electric vehSodium - ion was established in the 1980's, but at the time, lithium was preferred to sodium as the material of choice and it has been widely used ever since for portable electronic devices such as tablets, laptops and electric vehsodium as the material of choice and it has been widely used ever since for portable electronic devices such as tablets, laptops and electric vehicles.
If your pooch is diagnosed with sodium ion poisoning, their vet may administer electrolytes, intravenous fluids, or supplementary oxygen as needed.
A low - voltage current runs between the two, freeing copper ions and collecting sodium and chlorine, creating a crusty blue - green patina on one pipe as the other slowly blackens and weakens.
a b c d e f g h i j k l m n o p q r s t u v w x y z