Sentences with phrase «average operating capacity»

According to a report over at Business Green, the early data is exceedingly good — with the project reporting an average operating capacity factor of 65 % between October and January.
Calculated on an average operating capacity basis, the number would rise several fold.

Not exact matches

Yankee Rowe, a Gen I technology, 185 MW capacity, operated for 31 years (1961 - 1992) and produced 44 TWh of electricity at an average capacity factor 88 %.
The net summer capacity of the average retired coal unit was 133 megawatts (MW), compared with 278 MW for the rest of the coal units still operating.
As of the third quarter of 2014, more than 17,500 megawatts of cumulative solar electric capacity are operating in the United States, which is enough to power more than 3.5 million average American homes, according to the Solar Energy Industries Association.
note 9; «Spanish Wind Power Industry Attacks New Rules,» Reuters, 2 February 2007; «EWEA Aims for 22 % of Europe's Electricity by 2030,» Wind Directions (November / December 2006), p. 34; a 1 - megawatt wind turbine operating 36 percent of the time generates 3.15 million kilowatt - hours and the average U.S. home consumes 10,000 kilowatt - hours per year; average energy consumption per U.S. home from DOE, EIA, Regional Energy Profile — U.S. Household Electricity Report (Washington, DC: July 2005); capacity factor from NREL, op.
For 24 GW of power plants operating at an average of 13 % capacity factor (assumed by EDM - 2011), the land area would be around 35 million hectares and involve nearly 75,000 average sized wheat farms.
«Texas Decision Could Double Wind Power Capacity in the U.S.,» Renewable Energy Access, 4 October 2007; coal - fired power plant equivalents calculated by assuming that an average plant has a 500 - megawatt capacity and operates 72 percent of the time, generating 3.15 billion kilowatt - hours of electricity per year; an average wind turbine operates 36 percent of the time; Iceland geothermal usage from Iceland National Energy Authority and Ministries of Industry and Commerce, Geothermal Development and Research in Iceland (Reykjavik, Iceland: April 2006), p. 16; European per person consumption from European Wind Energy Association (EWEA), «Wind Power on Course to Become Major European Energy Source by the End of the Decade,» press release (Brussels: 22 November 2004); China's solar water heaters calculated from Renewable Energy Policy Network for the 21st Century (REN21), Renewables Global Status Report, 2006 Update (Washington, DC: Worldwatch Institute, 2006), p. 21, and from Bingham Kennedy, Jr., Dissecting China's 2000 Census (Washington, DC: Population Reference Bureau, June 2001); Philippines from Geothermal Energy Association (GEA), «World Geothermal Power Up 50 %, New US Boom Possible,» press release (Washington, DC: 11 ApriCapacity in the U.S.,» Renewable Energy Access, 4 October 2007; coal - fired power plant equivalents calculated by assuming that an average plant has a 500 - megawatt capacity and operates 72 percent of the time, generating 3.15 billion kilowatt - hours of electricity per year; an average wind turbine operates 36 percent of the time; Iceland geothermal usage from Iceland National Energy Authority and Ministries of Industry and Commerce, Geothermal Development and Research in Iceland (Reykjavik, Iceland: April 2006), p. 16; European per person consumption from European Wind Energy Association (EWEA), «Wind Power on Course to Become Major European Energy Source by the End of the Decade,» press release (Brussels: 22 November 2004); China's solar water heaters calculated from Renewable Energy Policy Network for the 21st Century (REN21), Renewables Global Status Report, 2006 Update (Washington, DC: Worldwatch Institute, 2006), p. 21, and from Bingham Kennedy, Jr., Dissecting China's 2000 Census (Washington, DC: Population Reference Bureau, June 2001); Philippines from Geothermal Energy Association (GEA), «World Geothermal Power Up 50 %, New US Boom Possible,» press release (Washington, DC: 11 Apricapacity and operates 72 percent of the time, generating 3.15 billion kilowatt - hours of electricity per year; an average wind turbine operates 36 percent of the time; Iceland geothermal usage from Iceland National Energy Authority and Ministries of Industry and Commerce, Geothermal Development and Research in Iceland (Reykjavik, Iceland: April 2006), p. 16; European per person consumption from European Wind Energy Association (EWEA), «Wind Power on Course to Become Major European Energy Source by the End of the Decade,» press release (Brussels: 22 November 2004); China's solar water heaters calculated from Renewable Energy Policy Network for the 21st Century (REN21), Renewables Global Status Report, 2006 Update (Washington, DC: Worldwatch Institute, 2006), p. 21, and from Bingham Kennedy, Jr., Dissecting China's 2000 Census (Washington, DC: Population Reference Bureau, June 2001); Philippines from Geothermal Energy Association (GEA), «World Geothermal Power Up 50 %, New US Boom Possible,» press release (Washington, DC: 11 April 2002).
If wind operated at 30 % of capacity and solar at 15 % they could have produced 986,000 MWh of intermittent electricity or enough to supply about 220,000 average Ontario households for the six months in that report.
The current world electricity system operates at an average capacity factor of about 50 %, so that means about 64TW of generation.
note 2; coal - fired power plant equivalents calculated by assuming that an average plant has a 500 - megawatt capacity and operates 72 percent of the time, generating 3.15 billion kilowatt - hours of electricity per year.
U.S. Department of Energy (DOE), Energy Information Administration (EIA), Crude Oil Production, electronic database, at tonto.eia.doe.gov, updated 28 July 2008; American Wind Energy Association (AWEA), «Installed U.S. Wind Power Capacity Surged 45 % in 2007: American Wind Energy Association Market Report,» press release (Washington, DC: 17 January 2008); AWEA, U.S. Wind Energy Projects, electronic database, at www.awea.org/projects, updated 31 March 2009; future capacity calculated from Emerging Energy Research (EER), «US Wind Markets Surge to New Heights,» press release (Cambridge, MA: 14 August 2008); coal - fired power plant equivalents calculated by assuming that an average plant has a 500 - megawatt capacity and operates 72 percent of the time, generating 3.15 billion kilowatt - hours of electricity per year; residential consumption calculated using «Residential Sector Energy Consumption Estimates, 2005,» in DOE, EIA, Residential Energy Consumption Survey 2005 Status Report (Washington, DC: 2007), with capacity factor from DOE, National Renewable Energy Laboratory (NREL), Power Technologies Energy Data Book (Golden, CO: August 2006); population from U.S. Census Bureau, State & County QuickFacts, electronic database, at quickfacts.census.gov, updated 20 FebruaCapacity Surged 45 % in 2007: American Wind Energy Association Market Report,» press release (Washington, DC: 17 January 2008); AWEA, U.S. Wind Energy Projects, electronic database, at www.awea.org/projects, updated 31 March 2009; future capacity calculated from Emerging Energy Research (EER), «US Wind Markets Surge to New Heights,» press release (Cambridge, MA: 14 August 2008); coal - fired power plant equivalents calculated by assuming that an average plant has a 500 - megawatt capacity and operates 72 percent of the time, generating 3.15 billion kilowatt - hours of electricity per year; residential consumption calculated using «Residential Sector Energy Consumption Estimates, 2005,» in DOE, EIA, Residential Energy Consumption Survey 2005 Status Report (Washington, DC: 2007), with capacity factor from DOE, National Renewable Energy Laboratory (NREL), Power Technologies Energy Data Book (Golden, CO: August 2006); population from U.S. Census Bureau, State & County QuickFacts, electronic database, at quickfacts.census.gov, updated 20 Februacapacity calculated from Emerging Energy Research (EER), «US Wind Markets Surge to New Heights,» press release (Cambridge, MA: 14 August 2008); coal - fired power plant equivalents calculated by assuming that an average plant has a 500 - megawatt capacity and operates 72 percent of the time, generating 3.15 billion kilowatt - hours of electricity per year; residential consumption calculated using «Residential Sector Energy Consumption Estimates, 2005,» in DOE, EIA, Residential Energy Consumption Survey 2005 Status Report (Washington, DC: 2007), with capacity factor from DOE, National Renewable Energy Laboratory (NREL), Power Technologies Energy Data Book (Golden, CO: August 2006); population from U.S. Census Bureau, State & County QuickFacts, electronic database, at quickfacts.census.gov, updated 20 Februacapacity and operates 72 percent of the time, generating 3.15 billion kilowatt - hours of electricity per year; residential consumption calculated using «Residential Sector Energy Consumption Estimates, 2005,» in DOE, EIA, Residential Energy Consumption Survey 2005 Status Report (Washington, DC: 2007), with capacity factor from DOE, National Renewable Energy Laboratory (NREL), Power Technologies Energy Data Book (Golden, CO: August 2006); population from U.S. Census Bureau, State & County QuickFacts, electronic database, at quickfacts.census.gov, updated 20 Februacapacity factor from DOE, National Renewable Energy Laboratory (NREL), Power Technologies Energy Data Book (Golden, CO: August 2006); population from U.S. Census Bureau, State & County QuickFacts, electronic database, at quickfacts.census.gov, updated 20 February 2009.
In order to serve all the women currently obtaining contraceptive services at Planned Parenthood health centers nationwide, other types of safety - net family planning providers would have to increase their client caseloads by 47 %, on average.2 Federally qualified health center (FQHC) sites offering contraceptive care, hospital sites and others would have to increase their capacity by more than half (see chart 1).2 Sites operated by public health departments nationwide would have to increase their contraceptive client caseloads by a lesser proportion.
a b c d e f g h i j k l m n o p q r s t u v w x y z