Sentences with phrase «cloud microphysical processes»

Interactions with the hydrological cycle, and additional impacts on the radiation budget, occur through the role of aerosols in cloud microphysical processes, as aerosol particles act as cloud condensation nuclei (CCN) and ice nuclei (IN).
This book incorporates the heritage of Russian cloud physics that introduced and developed the kinetic equations for drop and crystal diffusion growth, the fast numerical algorithms for their solutions, and stochastic approach to cloud microphysical processes.
In the context of models that include cloud processes, ranging from small - scale models of clouds and atmospheric chemistry to global weather and climate models, the unified theoretical foundations presented here provide the basis for incorporating cloud microphysical processes in these models in a manner that represent the process interactions and feedback processes over the relevant range of environmental and parametric conditions.
The aci effect (associated with clouds) is either specified in the model as forcing, or the model allows the aerosols to interact directly with the cloud microphysical processes.
The research team for this study used these data in sophisticated numerical models to examine cloud microphysical processes that are important for cloud maintenance but can not be directly observed, even with the most advanced instrumentation.

Not exact matches

What's Next: With this new knowledge of the complex interactions between dynamic and microphysical processes in mixed - phase clouds, researchers can improve the representation of these clouds in climate models.
The microphysical cloud processes, aerosol interactions, etc which are not resolved (spatially) by models or are not reducible to simple algebraic answers must be constrained heavily and talked about with uncertanity.
The issue of who is right is pretty much entirely unresolved at this point, simply because the interaction between surface processes which force Cumulonimbus clouds and the cloud droplet microphysical processes which drive the internal processes within the clouds themselves are exceedingly complex.
The meeting will mainly cover the following themes, but can include other topics related to understanding and modelling the atmosphere: ● Surface drag and momentum transport: orographic drag, convective momentum transport ● Processes relevant for polar prediction: stable boundary layers, mixed - phase clouds ● Shallow and deep convection: stochasticity, scale - awareness, organization, grey zone issues ● Clouds and circulation feedbacks: boundary - layer clouds, CFMIP, cirrus ● Microphysics and aerosol - cloud interactions: microphysical observations, parameterization, process studies on aerosol - cloud interactions ● Radiation: circulation coupling; interaction between radiation and clouds ● Land - atmosphere interactions: Role of land processes (snow, soil moisture, soil temperature, and vegetation) in sub-seasonal to seasonal (S2S) prediction ● Physics - dynamics coupling: numerical methods, scale - separation and grey - zone, thermodynamic consistency ● Next generation model development: the challenge of exascale, dynamical core developments, regional refinement, super-parametrization ● High Impact and Extreme Weather: role of convective scale models; ensembles; relevant challenges for model deProcesses relevant for polar prediction: stable boundary layers, mixed - phase clouds ● Shallow and deep convection: stochasticity, scale - awareness, organization, grey zone issues ● Clouds and circulation feedbacks: boundary - layer clouds, CFMIP, cirrus ● Microphysics and aerosol - cloud interactions: microphysical observations, parameterization, process studies on aerosol - cloud interactions ● Radiation: circulation coupling; interaction between radiation and clouds ● Land - atmosphere interactions: Role of land processes (snow, soil moisture, soil temperature, and vegetation) in sub-seasonal to seasonal (S2S) prediction ● Physics - dynamics coupling: numerical methods, scale - separation and grey - zone, thermodynamic consistency ● Next generation model development: the challenge of exascale, dynamical core developments, regional refinement, super-parametrization ● High Impact and Extreme Weather: role of convective scale models; ensembles; relevant challenges for model deprocesses (snow, soil moisture, soil temperature, and vegetation) in sub-seasonal to seasonal (S2S) prediction ● Physics - dynamics coupling: numerical methods, scale - separation and grey - zone, thermodynamic consistency ● Next generation model development: the challenge of exascale, dynamical core developments, regional refinement, super-parametrization ● High Impact and Extreme Weather: role of convective scale models; ensembles; relevant challenges for model development
«In order to develop climate models, we have to consider microphysical processes, such as how a cloud droplet gets formed and how such droplets and physical conditions inside and outside of a cloud are changed by the presence of aerosols,» she said.
a b c d e f g h i j k l m n o p q r s t u v w x y z