Sentences with phrase «clusters of galaxies in the universe»

Another measure comes from counting the number of clusters of galaxies in the universe to measure the volume of space and the rate at which that volume is increasing.

Not exact matches

For example, the layout of the galaxies in the universe shows exacting organization, being arranged in clusters and super clusters.
When the cosmos was a few hundred million years old, this gas coalesced into the earliest stars, which formed in clusters that clumped together into galaxies, the oldest of which appears 400 million years after the universe was born.
VIRTUAL UNIVERSE In a snapshot from the Illustris computer simulation of the universe, galaxies (pink) cluster along filaments of dark matterUNIVERSE In a snapshot from the Illustris computer simulation of the universe, galaxies (pink) cluster along filaments of dark matteruniverse, galaxies (pink) cluster along filaments of dark matter (blue).
Researchers used supernovas, cosmic microwave background radiation and patterns of galaxy clusters to measure the Hubble constant — the rate at which the universe expands — but their results were mismatched, Emily Conover reported in «Debate persists on cosmic expansion» (SN: 8/6/16, p. 10).
«In contrast to the well - studied galaxies in clusters — the «cities» of the universe — we know relatively little about the properties of galaxies in voids.&raquIn contrast to the well - studied galaxies in clusters — the «cities» of the universe — we know relatively little about the properties of galaxies in voids.&raquin clusters — the «cities» of the universe — we know relatively little about the properties of galaxies in voids.&raquin voids.»
A spheroidal ring projection would mirror the strings of clusters of galaxies seen to surround voids in the universe; voids and string - like formations are seen and predicted by many models of the cosmos.
For example, small differences in temperature across the sky show where parts of the universe were denser, eventually condensing into galaxies and galactic clusters.
The study led by Donahue looked at far - ultraviolet light from a variety of massive elliptical galaxies found in the Cluster Lensing And Supernova Survey with Hubble (CLASH), which contains elliptical galaxies in the distant universe.
Clouds of these particles seem to embrace galaxy clusters in a large sphere, and they seemingly move unimpeded through the universe.
The location of galaxies or clusters in this enormous cosmic web tests our understanding of the way structure forms in the universe.
A new study based on observations with the Hubble Space Telescope has shown that the most massive galaxies in the universe, which are found in clusters like this, have been aligned with the distribution of neighboring galaxies for at least 10 billion years.
According to theory, the bulk of the matter in the universe consists of large, dark filaments of gas in the vast empty space between galaxy clusters.
Remarkably, the distribution of star - forming galaxies around a cluster of galaxies in the more distant universe (5 billion years ago) corresponds much more closely with the weak lensing map than a slice of the more nearby universe (3 billion years ago).
Astronomers see its effects throughout the cosmos — in the rotation of galaxies, in the distortion of light passing through galaxy clusters, and in simulations of the early universe, which require the presence of dark matter to form galaxies at all.
Galaxy clusters are the most massive objects in the universe, containing hundreds to thousands of galaxies, bound together by gravity.
The cluster, named the Phoenix galaxy cluster, is one of the biggest in the universe.
These enhanced capabilities will allow scientists to observe the gas squeezed within galaxy clusters, determining its composition, motion, and turbulence, all for a better understanding of how chemical elements evolved within the universe and what role interstellar gases play in star and galaxy formation.
Lead researcher Dr David Clements, from the Department of Physics at Imperial College London, explains: «Although we're able to see individual galaxies that go further back in time, up to now, the most distant clusters found by astronomers date back to when the universe was 4.5 billion years old.
Both the COBE ripples and the large - scale clustering of galaxies can be explained by a CDM universe in which 80 per cent of the present mass density is contributed by a cosmological constant, though some cosmologists argue that such theories may not explain the motions of galaxies.
If there is any large amount of antimatter in the universe, it must encompass at least an entire galaxy cluster, and probably a supercluster.
Thanks to the dry, clear atmosphere at the South Pole, SPT is better able to «look» at the cosmic microwave background — the thermal radiation left over from the Big Bang — and map out the location of galaxy clusters, which are hundreds to thousands of galaxies that are bound together gravitationally and among the largest objects in the universe.
Dark matter, shaded blue in these Hubble telescope photos of galaxy clusters, invisibly litters the entire universe.
The largest clumps of matter in the universe had an initial angular momentum — and these clumps broke up into ever smaller clumps, forming smaller clusters of galaxies, groups of galaxies, individual galaxies, solar systems within galaxies and ultimately, individual stars and planets.
Cold Dark Matter Model A leading model of the universe's evolution since the Big Bang, in which slow - moving dark - matter particles clumped together, seeding the formation of galaxies and galactic clusters.
The newly discovered black hole is in a galaxy, NGC 1600, in the opposite part of the sky from the Coma Cluster in a relative desert, said the leader of the discovery team, Chung - Pei Ma, a UC Berkeley professor of astronomy and head of the MASSIVE Survey, a study of the most massive galaxies and black holes in the local universe with the goal of understanding how they form and grow supermassive.
The galaxy was detected as part of the Frontier Fields program, an ambitious three - year effort, begun in 2013, that teams Hubble with NASA's other Great Observatories — the Spitzer Space Telescope and the Chandra X-ray Observatory — to probe the early universe by studying large galaxy clusters.
There's dark matter, an additional unseen stuff amounting to a quarter of everything in the universe, which keeps galaxies and clusters of galaxies in line and stops them from flying apart.
g (acceleration due to gravity) G (gravitational constant) G star G1.9 +0.3 gabbro Gabor, Dennis (1900 — 1979) Gabriel's Horn Gacrux (Gamma Crucis) gadolinium Gagarin, Yuri Alexeyevich (1934 — 1968) Gagarin Cosmonaut Training Center GAIA Gaia Hypothesis galactic anticenter galactic bulge galactic center Galactic Club galactic coordinates galactic disk galactic empire galactic equator galactic habitable zone galactic halo galactic magnetic field galactic noise galactic plane galactic rotation galactose Galatea GALAXIES galaxy galaxy cannibalism galaxy classification galaxy formation galaxy interaction galaxy merger Galaxy, The Galaxy satellite series Gale Crater Galen (c. AD 129 — c. 216) galena GALEX (Galaxy Evolution Explorer) Galilean satellites Galilean telescope Galileo (Galilei, Galileo)(1564 — 1642) Galileo (spacecraft) Galileo Europa Mission (GEM) Galileo satellite navigation system gall gall bladder Galle, Johann Gottfried (1812 — 1910) gallic acid gallium gallon gallstone Galois, Évariste (1811 — 1832) Galois theory Galton, Francis (1822 — 1911) Galvani, Luigi (1737 — 1798) galvanizing galvanometer game game theory GAMES AND PUZZLES gamete gametophyte Gamma (Soviet orbiting telescope) Gamma Cassiopeiae Gamma Cassiopeiae star gamma function gamma globulin gamma rays Gamma Velorum gamma - ray burst gamma - ray satellites Gamow, George (1904 — 1968) ganglion gangrene Ganswindt, Hermann (1856 — 1934) Ganymede «garbage theory», of the origin of life Gardner, Martin (1914 — 2010) Garneau, Marc (1949 ---RRB- garnet Garnet Star (Mu Cephei) Garnet Star Nebula (IC 1396) garnierite Garriott, Owen K. (1930 ---RRB- Garuda gas gas chromatography gas constant gas giant gas laws gas - bounded nebula gaseous nebula gaseous propellant gaseous - propellant rocket engine gasoline Gaspra (minor planet 951) Gassendi, Pierre (1592 — 1655) gastric juice gastrin gastrocnemius gastroenteritis gastrointestinal tract gastropod gastrulation Gatewood, George D. (1940 ---RRB- Gauer - Henry reflex gauge boson gauge theory gauss (unit) Gauss, Carl Friedrich (1777 — 1855) Gaussian distribution Gay - Lussac, Joseph Louis (1778 — 1850) GCOM (Global Change Observing Mission) Geber (c. 720 — 815) gegenschein Geiger, Hans Wilhelm (1882 — 1945) Geiger - Müller counter Giessler tube gel gelatin Gelfond's theorem Gell - Mann, Murray (1929 ---RRB- GEM «gemination,» of martian canals Geminga Gemini (constellation) Gemini Observatory Gemini Project Gemini - Titan II gemstone gene gene expression gene mapping gene pool gene therapy gene transfer General Catalogue of Variable Stars (GCVS) general precession general theory of relativity generation ship generator Genesis (inflatable orbiting module) Genesis (sample return probe) genetic code genetic counseling genetic disorder genetic drift genetic engineering genetic marker genetic material genetic pool genetic recombination genetics GENETICS AND HEREDITY Geneva Extrasolar Planet Search Program genome genome, interstellar transmission of genotype gentian violet genus geoboard geode geodesic geodesy geodesy satellites geodetic precession Geographos (minor planet 1620) geography GEOGRAPHY Geo - IK geologic time geology GEOLOGY AND PLANETARY SCIENCE geomagnetic field geomagnetic storm geometric mean geometric sequence geometry GEOMETRY geometry puzzles geophysics GEOS (Geodetic Earth Orbiting Satellite) Geosat geostationary orbit geosynchronous orbit geosynchronous / geostationary transfer orbit (GTO) geosyncline Geotail (satellite) geotropism germ germ cells Germain, Sophie (1776 — 1831) German Rocket Society germanium germination Gesner, Konrad von (1516 — 1565) gestation Get Off the Earth puzzle Gettier problem geyser g - force GFO (Geosat Follow - On) GFZ - 1 (GeoForschungsZentrum) ghost crater Ghost Head Nebula (NGC 2080) ghost image Ghost of Jupiter (NGC 3242) Giacconi, Riccardo (1931 ---RRB- Giacobini - Zinner, Comet (Comet 21P /) Giaever, Ivar (1929 ---RRB- giant branch Giant Magellan Telescope giant molecular cloud giant planet giant star Giant's Causeway Giauque, William Francis (1895 — 1982) gibberellins Gibbs, Josiah Willard (1839 — 1903) Gibbs free energy Gibson, Edward G. (1936 ---RRB- Gilbert, William (1544 — 1603) gilbert (unit) Gilbreath's conjecture gilding gill gill (unit) Gilruth, Robert R. (1913 — 2000) gilsonite gimbal Ginga ginkgo Giotto (ESA Halley probe) GIRD (Gruppa Isutcheniya Reaktivnovo Dvisheniya) girder glacial drift glacial groove glacier gland Glaser, Donald Arthur (1926 — 2013) Glashow, Sheldon (1932 ---RRB- glass GLAST (Gamma - ray Large Area Space Telescope) Glauber, Johann Rudolf (1607 — 1670) glaucoma glauconite Glenn, John Herschel, Jr. (1921 ---RRB- Glenn Research Center Glennan, T (homas) Keith (1905 — 1995) glenoid cavity glia glial cell glider Gliese 229B Gliese 581 Gliese 67 (HD 10307, HIP 7918) Gliese 710 (HD 168442, HIP 89825) Gliese 86 Gliese 876 Gliese Catalogue glioma glissette glitch Global Astrometric Interferometer for Astrophysics (GAIA) Global Oscillation Network Group (GONG) Globalstar globe Globigerina globular cluster globular proteins globule globulin globus pallidus GLOMR (Global Low Orbiting Message Relay) GLONASS (Global Navigation Satellite System) glossopharyngeal nerve Gloster E. 28/39 glottis glow - worm glucagon glucocorticoid glucose glucoside gluon Glushko, Valentin Petrovitch (1908 — 1989) glutamic acid glutamine gluten gluteus maximus glycerol glycine glycogen glycol glycolysis glycoprotein glycosidic bond glycosuria glyoxysome GMS (Geosynchronous Meteorological Satellite) GMT (Greenwich Mean Time) Gnathostomata gneiss Go Go, No - go goblet cell GOCE (Gravity field and steady - state Ocean Circulation Explorer) God Goddard, Robert Hutchings (1882 — 1945) Goddard Institute for Space Studies Goddard Space Flight Center Gödel, Kurt (1906 — 1978) Gödel universe Godwin, Francis (1562 — 1633) GOES (Geostationary Operational Environmental Satellite) goethite goiter gold Gold, Thomas (1920 — 2004) Goldbach conjecture golden ratio (phi) Goldin, Daniel Saul (1940 ---RRB- gold - leaf electroscope Goldstone Tracking Facility Golgi, Camillo (1844 — 1926) Golgi apparatus Golomb, Solomon W. (1932 — 2016) golygon GOMS (Geostationary Operational Meteorological Satellite) gonad gonadotrophin - releasing hormone gonadotrophins Gondwanaland Gonets goniatite goniometer gonorrhea Goodricke, John (1764 — 1786) googol Gordian Knot Gordon, Richard Francis, Jr. (1929 — 2017) Gore, John Ellard (1845 — 1910) gorge gorilla Gorizont Gott loop Goudsmit, Samuel Abraham (1902 — 1978) Gould, Benjamin Apthorp (1824 — 1896) Gould, Stephen Jay (1941 — 2002) Gould Belt gout governor GPS (Global Positioning System) Graaf, Regnier de (1641 — 1673) Graafian follicle GRAB graben GRACE (Gravity Recovery and Climate Experiment) graceful graph gradient Graham, Ronald (1935 ---RRB- Graham, Thomas (1805 — 1869) Graham's law of diffusion Graham's number GRAIL (Gravity Recovery and Interior Laboratory) grain (cereal) grain (unit) gram gram - atom Gramme, Zénobe Théophile (1826 — 1901) gramophone Gram's stain Gran Telescopio Canarias (GTC) Granat Grand Tour grand unified theory (GUT) Grandfather Paradox Granit, Ragnar Arthur (1900 — 1991) granite granulation granule granulocyte graph graph theory graphene graphite GRAPHS AND GRAPH THEORY graptolite grass grassland gravel graveyard orbit gravimeter gravimetric analysis Gravitational Biology Facility gravitational collapse gravitational constant (G) gravitational instability gravitational lens gravitational life gravitational lock gravitational microlensing GRAVITATIONAL PHYSICS gravitational slingshot effect gravitational waves graviton gravity gravity gradient gravity gradient stabilization Gravity Probe A Gravity Probe B gravity - assist gray (Gy) gray goo gray matter grazing - incidence telescope Great Annihilator Great Attractor great circle Great Comets Great Hercules Cluster (M13, NGC 6205) Great Monad Great Observatories Great Red Spot Great Rift (in Milky Way) Great Rift Valley Great Square of Pegasus Great Wall greater omentum greatest elongation Green, George (1793 — 1841) Green, Nathaniel E. Green, Thomas Hill (1836 — 1882) green algae Green Bank Green Bank conference (1961) Green Bank Telescope green flash greenhouse effect greenhouse gases Green's theorem Greg, Percy (1836 — 1889) Gregorian calendar Grelling's paradox Griffith, George (1857 — 1906) Griffith Observatory Grignard, François Auguste Victor (1871 — 1935) Grignard reagent grike Grimaldi, Francesco Maria (1618 — 1663) Grissom, Virgil (1926 — 1967) grit gritstone Groom Lake Groombridge 34 Groombridge Catalogue gross ground, electrical ground state ground - track group group theory GROUPS AND GROUP THEORY growing season growth growth hormone growth hormone - releasing hormone growth plate Grudge, Project Gruithuisen, Franz von Paula (1774 — 1852) Grus (constellation) Grus Quartet (NGC 7552, NGC 7582, NGC 7590, and NGC 7599) GSLV (Geosynchronous Satellite Launch Vehicle) g - suit G - type asteroid Guericke, Otto von (1602 — 1686) guanine Guiana Space Centre guidance, inertial Guide Star Catalog (GSC) guided missile guided missiles, postwar development Guillaume, Charles Édouard (1861 — 1938) Gulf Stream (ocean current) Gulfstream (jet plane) Gullstrand, Allvar (1862 — 1930) gum Gum Nebula gun metal gunpowder Gurwin Gusev Crater gut Gutenberg, Johann (c. 1400 — 1468) Guy, Richard Kenneth (1916 ---RRB- guyot Guzman Prize gymnosperm gynecology gynoecium gypsum gyrocompass gyrofrequency gyropilot gyroscope gyrostabilizer Gyulbudagian's Nebula cluster globular proteins globule globulin globus pallidus GLOMR (Global Low Orbiting Message Relay) GLONASS (Global Navigation Satellite System) glossopharyngeal nerve Gloster E. 28/39 glottis glow - worm glucagon glucocorticoid glucose glucoside gluon Glushko, Valentin Petrovitch (1908 — 1989) glutamic acid glutamine gluten gluteus maximus glycerol glycine glycogen glycol glycolysis glycoprotein glycosidic bond glycosuria glyoxysome GMS (Geosynchronous Meteorological Satellite) GMT (Greenwich Mean Time) Gnathostomata gneiss Go Go, No - go goblet cell GOCE (Gravity field and steady - state Ocean Circulation Explorer) God Goddard, Robert Hutchings (1882 — 1945) Goddard Institute for Space Studies Goddard Space Flight Center Gödel, Kurt (1906 — 1978) Gödel universe Godwin, Francis (1562 — 1633) GOES (Geostationary Operational Environmental Satellite) goethite goiter gold Gold, Thomas (1920 — 2004) Goldbach conjecture golden ratio (phi) Goldin, Daniel Saul (1940 ---RRB- gold - leaf electroscope Goldstone Tracking Facility Golgi, Camillo (1844 — 1926) Golgi apparatus Golomb, Solomon W. (1932 — 2016) golygon GOMS (Geostationary Operational Meteorological Satellite) gonad gonadotrophin - releasing hormone gonadotrophins Gondwanaland Gonets goniatite goniometer gonorrhea Goodricke, John (1764 — 1786) googol Gordian Knot Gordon, Richard Francis, Jr. (1929 — 2017) Gore, John Ellard (1845 — 1910) gorge gorilla Gorizont Gott loop Goudsmit, Samuel Abraham (1902 — 1978) Gould, Benjamin Apthorp (1824 — 1896) Gould, Stephen Jay (1941 — 2002) Gould Belt gout governor GPS (Global Positioning System) Graaf, Regnier de (1641 — 1673) Graafian follicle GRAB graben GRACE (Gravity Recovery and Climate Experiment) graceful graph gradient Graham, Ronald (1935 ---RRB- Graham, Thomas (1805 — 1869) Graham's law of diffusion Graham's number GRAIL (Gravity Recovery and Interior Laboratory) grain (cereal) grain (unit) gram gram - atom Gramme, Zénobe Théophile (1826 — 1901) gramophone Gram's stain Gran Telescopio Canarias (GTC) Granat Grand Tour grand unified theory (GUT) Grandfather Paradox Granit, Ragnar Arthur (1900 — 1991) granite granulation granule granulocyte graph graph theory graphene graphite GRAPHS AND GRAPH THEORY graptolite grass grassland gravel graveyard orbit gravimeter gravimetric analysis Gravitational Biology Facility gravitational collapse gravitational constant (G) gravitational instability gravitational lens gravitational life gravitational lock gravitational microlensing GRAVITATIONAL PHYSICS gravitational slingshot effect gravitational waves graviton gravity gravity gradient gravity gradient stabilization Gravity Probe A Gravity Probe B gravity - assist gray (Gy) gray goo gray matter grazing - incidence telescope Great Annihilator Great Attractor great circle Great Comets Great Hercules Cluster (M13, NGC 6205) Great Monad Great Observatories Great Red Spot Great Rift (in Milky Way) Great Rift Valley Great Square of Pegasus Great Wall greater omentum greatest elongation Green, George (1793 — 1841) Green, Nathaniel E. Green, Thomas Hill (1836 — 1882) green algae Green Bank Green Bank conference (1961) Green Bank Telescope green flash greenhouse effect greenhouse gases Green's theorem Greg, Percy (1836 — 1889) Gregorian calendar Grelling's paradox Griffith, George (1857 — 1906) Griffith Observatory Grignard, François Auguste Victor (1871 — 1935) Grignard reagent grike Grimaldi, Francesco Maria (1618 — 1663) Grissom, Virgil (1926 — 1967) grit gritstone Groom Lake Groombridge 34 Groombridge Catalogue gross ground, electrical ground state ground - track group group theory GROUPS AND GROUP THEORY growing season growth growth hormone growth hormone - releasing hormone growth plate Grudge, Project Gruithuisen, Franz von Paula (1774 — 1852) Grus (constellation) Grus Quartet (NGC 7552, NGC 7582, NGC 7590, and NGC 7599) GSLV (Geosynchronous Satellite Launch Vehicle) g - suit G - type asteroid Guericke, Otto von (1602 — 1686) guanine Guiana Space Centre guidance, inertial Guide Star Catalog (GSC) guided missile guided missiles, postwar development Guillaume, Charles Édouard (1861 — 1938) Gulf Stream (ocean current) Gulfstream (jet plane) Gullstrand, Allvar (1862 — 1930) gum Gum Nebula gun metal gunpowder Gurwin Gusev Crater gut Gutenberg, Johann (c. 1400 — 1468) Guy, Richard Kenneth (1916 ---RRB- guyot Guzman Prize gymnosperm gynecology gynoecium gypsum gyrocompass gyrofrequency gyropilot gyroscope gyrostabilizer Gyulbudagian's Nebula Cluster (M13, NGC 6205) Great Monad Great Observatories Great Red Spot Great Rift (in Milky Way) Great Rift Valley Great Square of Pegasus Great Wall greater omentum greatest elongation Green, George (1793 — 1841) Green, Nathaniel E. Green, Thomas Hill (1836 — 1882) green algae Green Bank Green Bank conference (1961) Green Bank Telescope green flash greenhouse effect greenhouse gases Green's theorem Greg, Percy (1836 — 1889) Gregorian calendar Grelling's paradox Griffith, George (1857 — 1906) Griffith Observatory Grignard, François Auguste Victor (1871 — 1935) Grignard reagent grike Grimaldi, Francesco Maria (1618 — 1663) Grissom, Virgil (1926 — 1967) grit gritstone Groom Lake Groombridge 34 Groombridge Catalogue gross ground, electrical ground state ground - track group group theory GROUPS AND GROUP THEORY growing season growth growth hormone growth hormone - releasing hormone growth plate Grudge, Project Gruithuisen, Franz von Paula (1774 — 1852) Grus (constellation) Grus Quartet (NGC 7552, NGC 7582, NGC 7590, and NGC 7599) GSLV (Geosynchronous Satellite Launch Vehicle) g - suit G - type asteroid Guericke, Otto von (1602 — 1686) guanine Guiana Space Centre guidance, inertial Guide Star Catalog (GSC) guided missile guided missiles, postwar development Guillaume, Charles Édouard (1861 — 1938) Gulf Stream (ocean current) Gulfstream (jet plane) Gullstrand, Allvar (1862 — 1930) gum Gum Nebula gun metal gunpowder Gurwin Gusev Crater gut Gutenberg, Johann (c. 1400 — 1468) Guy, Richard Kenneth (1916 ---RRB- guyot Guzman Prize gymnosperm gynecology gynoecium gypsum gyrocompass gyrofrequency gyropilot gyroscope gyrostabilizer Gyulbudagian's Nebula (HH215)
«The work is ongoing, but what we're able to say now is that galaxies we are seeing at great distances are as strongly clustered in the early universe as they are today,» says Steidel, who is at the California Institute of Technology in Pasadena.»
LRIS also records the spectra of up to 50 objects simultaneously, especially useful for studies of clusters of galaxies in the most distant reaches, and earliest times, of the universe.
Hubble's latest discovery of 250 faint galaxies — formed 600 million to 900 million years after the Big Bang — in the early universe using three galaxy clusters to magnify the light given off by these distant objects.
At some point in the last few billion years, dark energy became dominant in the universe and thus prevented more galaxies and clusters of galaxies from forming.
The nature of dark matter — which physicists describe as the invisible component or so - called «missing mass» in the universe that would explain the faster - than - expected spins of galaxies, and their motion in clusters observed across the universe — has eluded scientists since its existence was deduced through calculations by Swiss astronomer Fritz Zwicky in 1933.
This phenomenon is what makes NGC 4696 stand out from among the other members of the Centaurus cluster, making it one of the biggest and brightest galaxies in the observable universe.
How did galaxies — many clusters of billions of stars — become commonplace in the universe?
Galaxies are not scattered randomly throughout the universe, but are often found in «clusters,» which are in turn parts of larger groupings called «super-clusters
When astronomers Margaret Geller and Emilio E. Falco plotted the positions of galaxies and galactic clusters in the universe, it became clear that galactic clusters and superclusters are not randomly distributed.
«Not only will we learn about the formation of the black holes, but these new data from Hubble help us connect globular clusters to galaxies, providing information on one of the most important unsolved problems in astronomy today: how galaxy structure forms in the universe,» adds Michael Rich of the University of California, Los Angeles (UCLA).
Galaxy clusters are commonly observed in the present - day universe and contain some of the oldest and most massive galaxies known.
By studying reionization, we can learn a great deal about the process of structure formation in the universe, and find the evolutionary links between the remarkably smooth matter distribution at early times revealed by CMB studies, and the highly structured universe of galaxies and clusters of galaxies at redshifts of 6 and below.
It will be used for many different types of astronomical studies ranging from detailed imaging of galaxy clusters in the early universe to mapping areas of star formation in our own Galaxy.
Scientists have decoded faint distortions in the patterns of the universe's earliest light to map huge tubelike structures invisible to our eyes - known as filaments - that serve as superhighways for delivering matter to dense hubs such as galaxy clusters.
Some of the new results included deeper understandings of galaxies in the distant universe, more complete pictures of the massive galaxy clusters, and the searches for exploding massive stars, called supernovae.
Gravitational lensing probes the distribution of matter in galaxies and clusters of galaxies, as well as enables observations of the distant universe.
In an effort to learn more about dark matter, astronomers observed how galaxy clusters collide with each other — an event that could hold clues about the mysterious invisible matter that makes up most of the mass of the universe.
The first map of dark matter in a major part of the universe shows that clusters of galaxies form at the increasingly clumpy intersections of dark matter filaments over time (more).
Dan P. Marrone is interested in galaxy clusters, galaxy formation in the early universe, and the physics of the supermassive black hole in our galaxy, Sagittarius A *.
a b c d e f g h i j k l m n o p q r s t u v w x y z