Sentences with phrase «cold polar sea»

The latter, which isolated Antarctica within a cold polar sea, produced global effects on atmospheric and oceanic circulation.

Not exact matches

The researchers identified several key circulation patterns that affected the winter temperatures from 1979 to 2013, particularly the Arctic Oscillation (a climate pattern that circulates around the Arctic Ocean and tends to confine colder air to the polar latitudes) and a second pattern they call Warm Arctic and Cold Eurasia (WACE), which they found correlates to sea ice loss as well as to particularly strong winters.
Mori et al. identified two circulation patterns that drove winter temperatures in Eurasia from 1979 to 2013: the Arctic Oscillation (which confines colder air to the polar latitudes) and a pattern dubbed «Warm Arctic and Cold Eurasia» (WACE), which correlated both to sea - ice loss in the Barents - Kara Sea and to particularly cold winters; its impact has more than doubled the probability of severe winters in central EuraCold Eurasia» (WACE), which correlated both to sea - ice loss in the Barents - Kara Sea and to particularly cold winters; its impact has more than doubled the probability of severe winters in central Eurassea - ice loss in the Barents - Kara Sea and to particularly cold winters; its impact has more than doubled the probability of severe winters in central EurasSea and to particularly cold winters; its impact has more than doubled the probability of severe winters in central Euracold winters; its impact has more than doubled the probability of severe winters in central Eurasia.
Background Mammals that have evolved to live in cold waters, such as whales, seals, sea lions and polar bears, commonly have a layer of blubber.
The research is timely given the extreme winter of 2017 - 2018, including record warm Arctic and low sea ice, record - breaking polar vortex disruption, record - breaking cold and disruptive snowfalls in the United States and Europe, severe «bomb cyclones» and costly nor'easter s, said Judah Cohen, director of seasonal forecasting at AER and lead author of the study.
The 1930 - 1940's globally were colder than today, but the polar temperatures were near equal (land a little lower, sea a little higher today).
, lightning related insurance claims, Lyme disease, Malaria, malnutrition, Maple syrup shortage, marine diseases, marine food chain decimated, Meaching (end of the world), megacryometeors, Melanoma, methane burps, melting permafrost, migration, microbes to decompose soil carbon more rapidly, more bad air days, more research needed, mountains break up, mudslides, next ice age, Nile delta damaged, no effect in India, nuclear plants bloom, ocean acidification, outdoor hockey threatened, oyster diseases, ozone loss, ozone repair slowed, ozone rise, pests increase, plankton blooms, plankton loss, plant viruses, polar tours scrapped, psychosocial disturbances, railroad tracks deformed, rainfall increase, rainfall reduction, refugees, release of ancient frozen viruses, resorts disappear, rift on Capitol Hill, rivers raised, rivers dry up, rockfalls, rocky peaks crack apart, Ross river disease, salinity reduction, Salmonella, sea level rise, sex change, ski resorts threatened, smog, snowfall increase, snowfall reduction, societal collapse, songbirds change eating habits, sour grapes, spiders invade Scotland, squid population explosion, spectacular orchids, tectonic plate movement, ticks move northward (Sweden), tides rise, tree beetle attacks, tree foliage increase (UK), tree growth slowed, trees less colourful, trees more colourful, tropics expansion, tsunamis, Venice flooded, volcanic eruptions, walrus pups orphaned, wars over water, water bills double, water supply unreliability, water scarcity (20 % of increase), weeds, West Nile fever, whales move north, wheat yields crushed in Australia, white Christmas dream ends, wildfires, wine — harm to Australian industry, wine industry damage (California), wine industry disaster (US), wine — more English, wine — no more French, wind shift, winters in Britain colder, wolves eat more moose, wolves eat less, workers laid off, World bankruptcy, World in crisis, Yellow fever.
When oceans get cold, and the surface of polar waters freezes, it snows much less and the sun takes away ice and limites the lower bound of temperature and sea level.
When the convective processes of the atmosphere remove enough water vapor from the oceans to drop sea levels and build polar ice caps, as has happened many times before, the top 35 meters of the oceans where climate models assume the only thermal mixing occurs, must heat up cold ocean water that comes from depths below the original 35 meter depth, removing vast more amounts of heat from the earth's surface and atmosphere.
This interpretation is further supported by the minimum of the total number of dinoflagellate cysts and peak concentrations of the dinoflagellate species Impagidinium pallidum (Fig. 7d), indicative of cold polar conditions and an extensive seasonal sea ice cover42.
When it gets warm, it melts polar sea ice and always snows enough to cause cold.
The large vertical movements occur in polar seas, where accelerated radiation makes the surface waters greatly colder than the deeper waters.
For example, reductions in seasonal sea ice cover and higher surface temperatures may open up new habitat in polar regions for some important fish species, such as cod, herring, and pollock.128 However, continued presence of cold bottom - water temperatures on the Alaskan continental shelf could limit northward migration into the northern Bering Sea and Chukchi Sea off northwestern Alaska.129, 130 In addition, warming may cause reductions in the abundance of some species, such as pollock, in their current ranges in the Bering Sea131and reduce the health of juvenile sockeye salmon, potentially resulting in decreased overwinter survival.132 If ocean warming continues, it is unlikely that current fishing pressure on pollock can be sustained.133 Higher temperatures are also likely to increase the frequency of early Chinook salmon migrations, making management of the fishery by multiple user groups more challenging.sea ice cover and higher surface temperatures may open up new habitat in polar regions for some important fish species, such as cod, herring, and pollock.128 However, continued presence of cold bottom - water temperatures on the Alaskan continental shelf could limit northward migration into the northern Bering Sea and Chukchi Sea off northwestern Alaska.129, 130 In addition, warming may cause reductions in the abundance of some species, such as pollock, in their current ranges in the Bering Sea131and reduce the health of juvenile sockeye salmon, potentially resulting in decreased overwinter survival.132 If ocean warming continues, it is unlikely that current fishing pressure on pollock can be sustained.133 Higher temperatures are also likely to increase the frequency of early Chinook salmon migrations, making management of the fishery by multiple user groups more challenging.Sea and Chukchi Sea off northwestern Alaska.129, 130 In addition, warming may cause reductions in the abundance of some species, such as pollock, in their current ranges in the Bering Sea131and reduce the health of juvenile sockeye salmon, potentially resulting in decreased overwinter survival.132 If ocean warming continues, it is unlikely that current fishing pressure on pollock can be sustained.133 Higher temperatures are also likely to increase the frequency of early Chinook salmon migrations, making management of the fishery by multiple user groups more challenging.Sea off northwestern Alaska.129, 130 In addition, warming may cause reductions in the abundance of some species, such as pollock, in their current ranges in the Bering Sea131and reduce the health of juvenile sockeye salmon, potentially resulting in decreased overwinter survival.132 If ocean warming continues, it is unlikely that current fishing pressure on pollock can be sustained.133 Higher temperatures are also likely to increase the frequency of early Chinook salmon migrations, making management of the fishery by multiple user groups more challenging.Sea131and reduce the health of juvenile sockeye salmon, potentially resulting in decreased overwinter survival.132 If ocean warming continues, it is unlikely that current fishing pressure on pollock can be sustained.133 Higher temperatures are also likely to increase the frequency of early Chinook salmon migrations, making management of the fishery by multiple user groups more challenging.134
I'm not sure whether this is off topic, but I have read in other threads that there is less cold water plunging to the ocean floor around Antarctica (and presumably the Arctic too) due to the sea water becoming less saline due to increased precipitation and melting polar ice.
A burst of widely publicized research over the past decade found that the depleted Arctic sea ice could be part of a chain of events weakening the stratospheric polar vortex and hiking the risk of cold outbreaks in northern midlatitudes.
Reichler's study ventured into new territory by asking if changes in stratospheric polar vortex winds impart heat or cold to the sea, and how that affects the sea.
https://judithcurry.com/2017/01/09/skin-in-the-game/#comment-834593 When polar sea ice has record low extents, there is more snow and cold that follows.
a b c d e f g h i j k l m n o p q r s t u v w x y z