Sentences with phrase «complex human disease by»

Develop and de-risk new therapeutic avenues to treat serious, complex human disease by understanding the biological mechanisms.

Not exact matches

«If human organs on chips can be shown to be robust and consistently recapitulate complex human organ physiology and disease phenotypes in unrelated laboratories around the world, as suggested by early proof - of - concept studies, then we will see them progressively replace one animal model at a time.
«We think that by restoring the natural «microbial identity» of laboratory mice, we will improve the modeling of complex diseases of free - living mammals, which includes humans and their diseases,» said Barbara Rehermann, M.D., senior author of the paper.
ANN ARBOR, Mich — By combining engineered polymeric materials known as hydrogels with complex intestinal tissue known as organoids — made from human pluripotent stem cells — researchers have taken an important step toward creating a new technology for controlling the growth of these organoids and using them for treating wounds in the gut that can be caused by disorders such as inflammatory bowel disease (IBDBy combining engineered polymeric materials known as hydrogels with complex intestinal tissue known as organoids — made from human pluripotent stem cells — researchers have taken an important step toward creating a new technology for controlling the growth of these organoids and using them for treating wounds in the gut that can be caused by disorders such as inflammatory bowel disease (IBDby disorders such as inflammatory bowel disease (IBD).
«Historically, we have had trouble modeling human diseases caused by mutation of just one copy of a gene in mice, which impedes research on complex conditions and limits our discovery of therapeutics,» explained Srivastava, director of the Gladstone Institute of Cardiovascular Disease and senior author on the study.
While this is a much more complex and daunting undertaking, by understanding the functions and network interactions of genes and proteins — both human and microbe — we will ultimately gain far greater insight into human health and reveal more solutions to dread diseases.
Abbreviations: Aβ, amyloid β - peptide; AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis; Ambra1, activating molecule in Beclin -1-regulated autophagy; AMPK, AMP - activated protein kinase; APP, amyloid precursor protein; AR, androgen receptor; Atg, autophagy - related; AV, autophagic vacuole; Bcl, B - cell lymphoma; BH3, Bcl - 2 homology 3; CaMKKβ, Ca2 + - dependent protein kinase kinase β; CHMP2B, charged multivesicular body protein 2B; CMA, chaperone - mediated autophagy; 2 ′ 5 ′ ddA, 2 ′, 5 ′ - dideoxyadenosine; deptor, DEP - domain containing mTOR - interacting protein; DRPLA, dentatorubral pallidoluysian atrophy; 4E - BP1, translation initiation factor 4E - binding protein - 1; Epac, exchange protein directly activated by cAMP; ER, endoplasmic reticulum; ERK1 / 2, extracellular - signal - regulated kinase 1/2; ESCRT, endosomal sorting complex required for transport; FAD, familial AD; FDA, U.S. Food and Drug Administration; FIP200, focal adhesion kinase family - interacting protein of 200 kDa; FoxO3, forkhead box O3; FTD, frontotemporal dementia; FTD3, FTD linked to chromosome 3; GAP, GTPase - activating protein; GR, guanidine retinoid; GSK3, glycogen synthase kinase 3; HD, Huntington's disease; hiPSC, human induced pluripotent stem cell; hVps, mammalian vacuolar protein sorting homologue; IKK, inhibitor of nuclear factor κB kinase; IMPase, inositol monophosphatase; IP3R, Ins (1,4,5) P3 receptor; I1R, imidazoline - 1 receptor; JNK1, c - Jun N - terminal kinase 1; LC3, light chain 3; LD, Lafora disease; L - NAME, NG - nitro - L - arginine methyl ester; LRRK2, leucine - rich repeat kinase 2; MIPS, myo - inositol -1-phosphate synthase; mLST8, mammalian lethal with SEC13 protein 8; MND, motor neuron disease; mTOR, mammalian target of rapamycin; mTORC, mTOR complex; MVB, multivesicular body; NAC, N - acetylcysteine; NBR1, neighbour of BRCA1 gene 1; NOS, nitric oxide synthase; p70S6K, ribosomal protein S6 kinase - 1; PD, Parkinson's disease; PDK1, phosphoinositide - dependent kinase 1; PE, phosphatidylethanolamine; PI3K, phosphoinositide 3 - kinase; PI3KC1a, class Ia PI3K; PI3KC3, class III PI3K; PI3KK, PI3K - related protein kinase; PINK1, PTEN - induced kinase 1; PKA, protein kinase A; PLC, phospholipase C; polyQ, polyglutamine; PS, presenilin; PTEN, phosphatase and tensin homologue deleted from chromosome 10; Rag, Ras - related GTP - binding protein; raptor, regulatory - associated protein of mTOR; Rheb, Ras homologue enriched in brain; rictor, rapamycin - insensitive companion of mTOR; SBMA, spinobulbar muscular atrophy; SCA, spinocerebellar ataxia; SLC, solute carrier; SMER, small - molecule enhancer of rapamycin; SMIR, small - molecule inhibitor of rapamycin; SNARE, N - ethylmaleimide - sensitive factor - attachment protein receptor; SOD1, copper / zinc superoxide dismutase 1; TFEB, transcription factor EB; TOR, target of rapamycin; TSC, tuberous sclerosis complex; ULK1, UNC -51-like kinase 1; UVRAG, UV irradiation resistance - associated gene; VAMP, vesicle - associated membrane protein; v - ATPase, vacuolar H + - ATPase; Vps, vacuolar protein sorting
Disease - driving pathways that involve the human immune system are often targeted by antibodies, and Organ - Chips recreate complex interactions of different human cell types and aspects of the human immune system, overcoming limitations of animal models which do not reflect all human immune cells.
By developing a simple chemically defined culture system permitting efficient differentiation of numerous human iPS cell lines toward cells of a mature hepatic state, we now demonstrate the possibility of modeling groups of diseases of non-neuronal origin whose phenotypes are a consequence of complex protein dysregulation within adult cells.
a b c d e f g h i j k l m n o p q r s t u v w x y z