Sentences with phrase «current renewable energy capacity»

The government responded by setting new, ambitious annual installation targets and putting the projection to 213GW in 2020, 5 times larger than the current renewable energy capacity of the United States.

Not exact matches

«New York has the technical and economic capacity to convert its economy to 100 % clean, renewable energy by 2030 with current commercially available technology.
Countries around the world are richly endowed with renewable energy, in some cases enough to easily double their current electrical generating capacities.
With a share of 100 % renewable energy sources and 12 times the current grid capacity, the balancing capacity of fossil fuel power plants can be reduced to 15 % of the total annual electricity consumption, which represents the maximum possible benefit of transmission for Europe.
In spite of the current challenging conditions in Ukraine, renewable energy has already become a dynamically developing sector in the country, providing the bulk of newly installed capacity.
1 Executive Summary 2 Scope of the Report 3 The Case for Hydrogen 3.1 The Drive for Clean Energy 3.2 The Uniqueness of Hydrogen 3.3 Hydrogen's Safety Record 4 Hydrogen Fuel Cells 4.1 Proton Exchange Membrane Fuel Cell 4.2 Fuel Cells and Batteries 4.3 Fuel Cell Systems Durability 4.4 Fuel Cell Vehicles 5 Hydrogen Fueling Infrastructure 5.1 Hydrogen Station Hardware 5.2 Hydrogen Compression and Storage 5.3 Hydrogen Fueling 5.4 Hydrogen Station Capacity 6 Hydrogen Fueling Station Types 6.1 Retail vs. Non-Retail Stations 6.1.1 Retail Hydrogen Stations 6.1.2 Non-Retail Hydrogen Stations 6.2 Mobile Hydrogen Stations 6.2.1 Honda's Smart Hydrogen Station 6.2.2 Nel Hydrogen's RotoLyzer 6.2.3 Others 7 Hydrogen Fueling Protocols 7.1 SAE J2601 7.2 Related Standards 7.3 Fueling Protocols vs. Vehicle Charging 7.4 SAE J2601 vs. SAE J1772 7.5 Ionic Compression 8 Hydrogen Station Rollout Strategy 8.1 Traditional Approaches 8.2 Current Approach 8.3 Factors Impacting Rollouts 8.4 Production and Distribution Scenarios 8.5 Reliability Issues 9 Sources of Hydrogen 9.1 Fossil Fuels 9.2 Renewable Sources 10 Methods of Hydrogen Production 10.1 Production from Non-Renewable Sources 10.1.1 Steam Reforming of Natural Gas 10.1.2 Coal Gasification 10.2 Production from Renewable Sources 10.2.1 Electrolysis 10.2.2 Biomass Gasification 11 Hydrogen Production Scenarios 11.1 Centralized Hydrogen Production 11.2 On - Site Hydrogen Production 11.2.1 On - site Electrolysis 11.2.2 On - Site Steam Methane Reforming 12 Hydrogen Delivery 12.1 Hydrogen Tube Trailers 12.2 Tanker Trucks 12.3 Pipeline Delivery 12.4 Railcars and Barges 13 Hydrogen Stations Cost Factors 13.1 Capital Expenditures 13.2 Operating Expenditures 14 Hydrogen Station Deployments 14.1 Asia - Pacific 14.1.1 Japan 14.1.2 Korea 14.1.3 China 14.1.4 Rest of Asia - Pacific 14.2 Europe, Middle East & Africa (EMEA) 14.2.1 Germany 14.2.2 The U.K. 14.2.3 Nordic Region 14.2.4 Rest of EMEA 14.3 Americas 14.3.1 U.S. West Coast 14.3.2 U.S. East Coast 14.3.3 Canada 14.3.4 Latin America 15 Selected Vendors 15.1 Air Liquide 15.2 Air Products and Chemicals, Inc. 15.3 Ballard Power Systems 15.4 FirstElement Fuel Inc. 15.5 FuelCell Energy, Inc. 15.6 Hydrogenics Corporation 15.7 The Linde Group 15.8 Nel Hydrogen 15.9 Nuvera Fuel Cells 15.10 Praxair 15.11 Proton OnSite / SunHydro 15.11.1 Proton Onsite 15.11.2 SunHydro 16 Market Forecasts 16.1 Overview 16.2 Global Hydrogen Station Market 16.2.1 Hydrogen Station Deployments 16.2.2 Hydrogen Stations Capacity 16.2.3 Hydrogen Station Costs 16.3 Asia - Pacific Hydrogen Station Market 16.3.1 Hydrogen Station Deployments 16.3.2 Hydrogen Stations Capacity 16.3.3 Hydrogen Station Costs 16.4 Europe, Middle East and Africa 16.4.1 Hydrogen Station Deployments 16.4.2 Hydrogen Station Capacity 16.4.3 Hydrogen Station Costs 16.5 Americas 16.5.1 Hydrogen Station Deployments 16.5.2 Hydrogen Station Capacity 16.5.3 Hydrogen Station Costs 17 Conclusions 17.1 Hydrogen as a Fuel 17.2 Rollout of Fuel Cell Vehicles 17.3 Hydrogen Station Deployments 17.4 Funding Requirements 17.5 Customer Experience 17.6 Other Findings
-- The term «renewable energy» means energy generated from solar, wind, biomass, landfill gas, ocean (including tidal, wave, current, and thermal), geothermal, municipal solid waste, or new hydroelectric generation capacity achieved from increased efficiency or additions of new capacity at an existing hydroelectric project.
Now India's National Solar Mission aims to source 20,000 megawatts of electricity from solar power by 2022 — about 4,000 megawatts more than the current capacity provided by all forms of renewable energy.
Combined, it will help Belgium meet its 2020 target of producing 13 % of its energy needs from renewable sources — a steep climb from the 9 % of current capacity in the country.
a b c d e f g h i j k l m n o p q r s t u v w x y z