Sentences with phrase «decrease in energy consumption»

Samsung says that the new UFS memory delivers a sequential read and write performance of as high speed as on Solid - State - Drives (SSDs) and there is a 50 percent decrease in energy consumption.
Coupled with the direct decrease in energy consumption from the grid, net metering compensation often allows solar customers to pay nearly nothing for electricity.
The report showed that emissions dropped 3.4 percent from 2012 to 2011, mostly due to a decrease in energy consumption and fuel switching from coal to natural gas.
In fact, much of the overall decrease in energy consumption can be traced to the shift from coal to gas, because modern gas - fired plants may use up to 46 percent less energy to produce the same amount of electricity.»
Looking to Machiavelli for a way to put some martial arts move on the West, and flip it into dense urban housing, bicycle commuting, and radical decreases in energy consumption may allow the green elite to feel superior.

Not exact matches

$ AGN is committed to doing our part to reduce climate change: decrease energy consumption, greenhouse gas, water use & waste by ~ 20 % in 2020
Even our present rate of energy consumption is not sustainable in the long term, so it is a matter of decreasing per - capita energy use as soon as possible.
In terms of effect on consumption, Ng et al estimated a reduction in sugar sweetened drink intake of 104 mL (10 %) per person per week compared with our predicted reduction of around 15 %.19 The substitution effects predicted in Ng et al's study are very slight, and as a result the predicted change in energy intake is larger (net decrease of 24 kJ / person / day compared with our estimate of 17 kJ / person / dayIn terms of effect on consumption, Ng et al estimated a reduction in sugar sweetened drink intake of 104 mL (10 %) per person per week compared with our predicted reduction of around 15 %.19 The substitution effects predicted in Ng et al's study are very slight, and as a result the predicted change in energy intake is larger (net decrease of 24 kJ / person / day compared with our estimate of 17 kJ / person / dayin sugar sweetened drink intake of 104 mL (10 %) per person per week compared with our predicted reduction of around 15 %.19 The substitution effects predicted in Ng et al's study are very slight, and as a result the predicted change in energy intake is larger (net decrease of 24 kJ / person / day compared with our estimate of 17 kJ / person / dayin Ng et al's study are very slight, and as a result the predicted change in energy intake is larger (net decrease of 24 kJ / person / day compared with our estimate of 17 kJ / person / dayin energy intake is larger (net decrease of 24 kJ / person / day compared with our estimate of 17 kJ / person / day).
The World Health Organization states that this imbalance is due to an increased intake of energy - dense foods and a decrease in physical activity • Research from the American Beverages Association on the impact and consumption of sweeteners in drinks confirms that drinking diet beverages as part of a weight loss program can help people lose weight • The study also suggests that drinking diet beverages may help dieters feel less hungry and assist people to manage or lose weight
I've noticed an overall decrease in sugar consumption, more energy, and more regular digestion.
In our factories, our sustainability process drives decreased energy consumption by installing new technologies and more efficient equipment while optimizing business and manufacturing processes.
In fact, per Crunchy Chicken «s blog, «for each degree set below 68 degrees, energy consumption decreases by about 6 to 8 percent.»
The report outlines how some sports and all energy drink products are being misused, discusses their ingredients, and provides guidance on their appropriate use, as in the case of sports drinks, and on how to decrease or eliminate consumption by children and adolescents, in the case of energy drinks.
The study, published Monday, shows that even though China decreased its coal consumption 2.9 percent in 2014, revised statistics show that coal energy consumption went down by just 0.7 percent that year, leading to a net increase in emissions of 0.5 percent.
In the same vein, the authors note that while the light - emitting diode is in fact the most energy - efficient, longest - lasting, and greenest source of artificial lighting, studies show that as the cost of lighting has decreased, total consumption has increased dramaticallIn the same vein, the authors note that while the light - emitting diode is in fact the most energy - efficient, longest - lasting, and greenest source of artificial lighting, studies show that as the cost of lighting has decreased, total consumption has increased dramaticallin fact the most energy - efficient, longest - lasting, and greenest source of artificial lighting, studies show that as the cost of lighting has decreased, total consumption has increased dramatically.
Why It Matters: Future materials that will decrease energy consumption and waste associated with manufacturing, detect harmful contaminants in foods and medicines, and enable the ultimate miniaturization of complex electronic devices will be composed of clusters containing different numbers and types of atoms.
A recent study that was published in the American Journal of Clinical Nutrition found that the increased intake of oleic acid, combined with a decrease in the consumption of palmitic acid increased fat burning and energy expenditure, while an increase in palmitic acid consumption had the exact opposite effects.
Having said that, a general approach would be: regular exercise under the expert guidance of an exercise professional and consumption of a moderately calorie - restricted traditional - like diet with a fairly high protein content (in order to decrease the loss of lean mass caused by the energy restriction), as well as the lifestyle changes I mentioned above.
They yielded varying findings, with increased risk associated with higher energy, protein, and animal product intake, and decreased risk related to the consumption of alcohol, fruit, and green and yellow vegetables — in sum, a low - fat, plant - based diet, high in phytoestrogens.
Their inverse associations with weight gain suggest that the increase in their consumption reduced the intake of other foods to a greater (caloric) extent, decreasing the overall amount of energy consumed.
«It's amazing we've increased our square footage and decreased our energy consumption; we're actually saving more money while we're expanding,» says Platenberg, 51, who, for his work in Loudoun County, was given the 2012 International Eagle Award by the Association of School Business Officials International.
However, peak oil means a double whammy — it reducec GHG emissions from oil, however, there is the danger, that we switch to coal - to - liquids, gas - to - liquids, tar sands and oil shales, just because increases in energy efficiency, solar and wind output are not enough to counter population increase, decrease in oil availability, and increase in total energy consumption...
Through cost - effective improvements identified for the construction of the St. Lawrence County Jail in Canton, the building and its systems reduced its energy consumption, decreased demands on the power system and increase occupant comfort.
In the long run, much of the economic growth of developed economies is likely to involve less energy - intensive sectors because of demand - side factors such as 1) the amount of stuff people can physically manage is limited (even with rented storage space), 2) migration to areas where the weather is more moderate will continue, 3) increased urbanization and population density reduces energy consumption per capita, 4) there is a lot of running room to decrease the energy consumption of our electronic devices (e.g., switching to clockless microprocessors, not that I'm predicting that specific innovation), 5) telecommunication will substitute for transportation on the margin, 6) cheaper and better data acquisition and processing will enable less wasteful routing and warehousing of material goods, and 7) aging populations will eventually reduce the total amount (local plus distant) of travel per person per year.
In its place, the work of innovation to decrease energy consumption is taken up by researchers and startups with many promising solutions like biofuel paved future roads that are cheaper than petroleum, sustainable and environmental friendly, or the creation of high speed system of transportation that runs on air and electricity, made by a company called HyperLoop.
REV is ensuring the State meets its 2030 energy goals of reducing statewide greenhouse gas emissions 40 percent and decreasing energy consumption in buildings by 23 percent.
Even if it increases for population (i.e. population grows more slowly in future), any matching decrease in doubling time for per - capita energy consumption will offset that increase and CO2 emissions will therefore continue to follow the curve.
Xie, vice-chairman of the powerful National Development and Reform Commission, sounded a note of alarm about China's decrease in energy efficiency this year and outlined stricter policies to curb energy consumption in an interview with the People's Daily earlier this week.
(7) A requirement that building retrofits conducted pursuant to a REEP program utilize, especially in all air - conditioned buildings, roofing materials with high solar energy reflectance, unless inappropriate due to green roof management, solar energy production, or for other reasons identified by the Administrator, in order to reduce energy consumption within the building, increase the albedo of the building's roof, and decrease the heat island effect in the area of the building, without reduction of otherwise applicable ceiling insulation standards.
In the same vein, the authors note that while the light - emitting diode (LED) is in fact the most energy - efficient, longest - lasting, and greenest source of artificial lighting, studies show that as the cost of lighting has decreased, total consumption has increased dramaticallIn the same vein, the authors note that while the light - emitting diode (LED) is in fact the most energy - efficient, longest - lasting, and greenest source of artificial lighting, studies show that as the cost of lighting has decreased, total consumption has increased dramaticallin fact the most energy - efficient, longest - lasting, and greenest source of artificial lighting, studies show that as the cost of lighting has decreased, total consumption has increased dramatically.
Four Technology Challenges Aim to Decrease Energy Consumption in Buildings and Reduce Greenhouse Gas Emissions
A more energy efficient envelope decreases the size of the mechanical systems needed to heat and cool the space, which in turn then requires a smaller amount of renewable energy to offset consumption.
In all regions of the world, except Asian OECD countries and Oceania, per capita consumption is decreasing as a result of rising incomes, urbanization, declining availability of wood sources and increasing availability of alternative sources of energy preferred to woodfuel.
However, NREL's 80 - percent - by - 2050 renewable energy study, which included biomass and geothermal, found that total water consumption and withdrawal would decrease significantly in a future with high renewables [7].
ENVIRONMENTAL OVERVIEW Total Energy Consumption (2000E): 2.7 quadrillion Btu * (0.7 % of world total energy consumption) Energy - Related Carbon Emissions (2000E): 36.4 million metric tons of carbon (0.6 % of world carbon emissions) Per Capita Energy Consumption (2000E): 73.2 million Btu (vs. U.S. value of 351.0 million Btu) Per Capita Carbon Emissions (2000E): 1.0 metric tons of carbon (vs U.S. value of 5.6 metric tons of carbon) Energy Intensity (2000E): 9,226 Btu / $ 1995 (vs U.S. value of 10,918 Btu / $ 1995) ** Carbon Intensity (2000E): 0.12 metric tons of carbon / thousand $ 1995 (vs U.S. value of 0.17 metric tons / thousand $ 1995) ** Sectoral Share of Energy Consumption (1998E): Industrial (48.6 %), Transportation (23.7 %), Residential (18.8 %), Commercial (8.8 %) Sectoral Share of Carbon Emissions (1998E): Industrial (44.8 %), Transportation (32.7 %), Residential (16.2 %), Commercial (6.2 %) Fuel Share of Energy Consumption (2000E): Natural Gas (45.2 %), Oil (36.3 %), Coal (1.5 %) Fuel Share of Carbon Emissions (2000E): Oil (48.1 %), Natural Gas (49.3 %), Coal (2.5 %) Renewable Energy Consumption (1998E): 393 trillion Btu * (0.5 % decrease from 1997) Number of People per Motor Vehicle (1998): 5.6 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (signed June 12, 1992 and ratified on March 11, Energy Consumption (2000E): 2.7 quadrillion Btu * (0.7 % of world total energy consumption) Energy - Related Carbon Emissions (2000E): 36.4 million metric tons of carbon (0.6 % of world carbon emissions) Per Capita Energy Consumption (2000E): 73.2 million Btu (vs. U.S. value of 351.0 million Btu) Per Capita Carbon Emissions (2000E): 1.0 metric tons of carbon (vs U.S. value of 5.6 metric tons of carbon) Energy Intensity (2000E): 9,226 Btu / $ 1995 (vs U.S. value of 10,918 Btu / $ 1995) ** Carbon Intensity (2000E): 0.12 metric tons of carbon / thousand $ 1995 (vs U.S. value of 0.17 metric tons / thousand $ 1995) ** Sectoral Share of Energy Consumption (1998E): Industrial (48.6 %), Transportation (23.7 %), Residential (18.8 %), Commercial (8.8 %) Sectoral Share of Carbon Emissions (1998E): Industrial (44.8 %), Transportation (32.7 %), Residential (16.2 %), Commercial (6.2 %) Fuel Share of Energy Consumption (2000E): Natural Gas (45.2 %), Oil (36.3 %), Coal (1.5 %) Fuel Share of Carbon Emissions (2000E): Oil (48.1 %), Natural Gas (49.3 %), Coal (2.5 %) Renewable Energy Consumption (1998E): 393 trillion Btu * (0.5 % decrease from 1997) Number of People per Motor Vehicle (1998): 5.6 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (signed June 12, 1992 and ratified on MarchConsumption (2000E): 2.7 quadrillion Btu * (0.7 % of world total energy consumption) Energy - Related Carbon Emissions (2000E): 36.4 million metric tons of carbon (0.6 % of world carbon emissions) Per Capita Energy Consumption (2000E): 73.2 million Btu (vs. U.S. value of 351.0 million Btu) Per Capita Carbon Emissions (2000E): 1.0 metric tons of carbon (vs U.S. value of 5.6 metric tons of carbon) Energy Intensity (2000E): 9,226 Btu / $ 1995 (vs U.S. value of 10,918 Btu / $ 1995) ** Carbon Intensity (2000E): 0.12 metric tons of carbon / thousand $ 1995 (vs U.S. value of 0.17 metric tons / thousand $ 1995) ** Sectoral Share of Energy Consumption (1998E): Industrial (48.6 %), Transportation (23.7 %), Residential (18.8 %), Commercial (8.8 %) Sectoral Share of Carbon Emissions (1998E): Industrial (44.8 %), Transportation (32.7 %), Residential (16.2 %), Commercial (6.2 %) Fuel Share of Energy Consumption (2000E): Natural Gas (45.2 %), Oil (36.3 %), Coal (1.5 %) Fuel Share of Carbon Emissions (2000E): Oil (48.1 %), Natural Gas (49.3 %), Coal (2.5 %) Renewable Energy Consumption (1998E): 393 trillion Btu * (0.5 % decrease from 1997) Number of People per Motor Vehicle (1998): 5.6 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (signed June 12, 1992 and ratified on March 11, energy consumption) Energy - Related Carbon Emissions (2000E): 36.4 million metric tons of carbon (0.6 % of world carbon emissions) Per Capita Energy Consumption (2000E): 73.2 million Btu (vs. U.S. value of 351.0 million Btu) Per Capita Carbon Emissions (2000E): 1.0 metric tons of carbon (vs U.S. value of 5.6 metric tons of carbon) Energy Intensity (2000E): 9,226 Btu / $ 1995 (vs U.S. value of 10,918 Btu / $ 1995) ** Carbon Intensity (2000E): 0.12 metric tons of carbon / thousand $ 1995 (vs U.S. value of 0.17 metric tons / thousand $ 1995) ** Sectoral Share of Energy Consumption (1998E): Industrial (48.6 %), Transportation (23.7 %), Residential (18.8 %), Commercial (8.8 %) Sectoral Share of Carbon Emissions (1998E): Industrial (44.8 %), Transportation (32.7 %), Residential (16.2 %), Commercial (6.2 %) Fuel Share of Energy Consumption (2000E): Natural Gas (45.2 %), Oil (36.3 %), Coal (1.5 %) Fuel Share of Carbon Emissions (2000E): Oil (48.1 %), Natural Gas (49.3 %), Coal (2.5 %) Renewable Energy Consumption (1998E): 393 trillion Btu * (0.5 % decrease from 1997) Number of People per Motor Vehicle (1998): 5.6 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (signed June 12, 1992 and ratified on Marchconsumption) Energy - Related Carbon Emissions (2000E): 36.4 million metric tons of carbon (0.6 % of world carbon emissions) Per Capita Energy Consumption (2000E): 73.2 million Btu (vs. U.S. value of 351.0 million Btu) Per Capita Carbon Emissions (2000E): 1.0 metric tons of carbon (vs U.S. value of 5.6 metric tons of carbon) Energy Intensity (2000E): 9,226 Btu / $ 1995 (vs U.S. value of 10,918 Btu / $ 1995) ** Carbon Intensity (2000E): 0.12 metric tons of carbon / thousand $ 1995 (vs U.S. value of 0.17 metric tons / thousand $ 1995) ** Sectoral Share of Energy Consumption (1998E): Industrial (48.6 %), Transportation (23.7 %), Residential (18.8 %), Commercial (8.8 %) Sectoral Share of Carbon Emissions (1998E): Industrial (44.8 %), Transportation (32.7 %), Residential (16.2 %), Commercial (6.2 %) Fuel Share of Energy Consumption (2000E): Natural Gas (45.2 %), Oil (36.3 %), Coal (1.5 %) Fuel Share of Carbon Emissions (2000E): Oil (48.1 %), Natural Gas (49.3 %), Coal (2.5 %) Renewable Energy Consumption (1998E): 393 trillion Btu * (0.5 % decrease from 1997) Number of People per Motor Vehicle (1998): 5.6 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (signed June 12, 1992 and ratified on March 11, Energy - Related Carbon Emissions (2000E): 36.4 million metric tons of carbon (0.6 % of world carbon emissions) Per Capita Energy Consumption (2000E): 73.2 million Btu (vs. U.S. value of 351.0 million Btu) Per Capita Carbon Emissions (2000E): 1.0 metric tons of carbon (vs U.S. value of 5.6 metric tons of carbon) Energy Intensity (2000E): 9,226 Btu / $ 1995 (vs U.S. value of 10,918 Btu / $ 1995) ** Carbon Intensity (2000E): 0.12 metric tons of carbon / thousand $ 1995 (vs U.S. value of 0.17 metric tons / thousand $ 1995) ** Sectoral Share of Energy Consumption (1998E): Industrial (48.6 %), Transportation (23.7 %), Residential (18.8 %), Commercial (8.8 %) Sectoral Share of Carbon Emissions (1998E): Industrial (44.8 %), Transportation (32.7 %), Residential (16.2 %), Commercial (6.2 %) Fuel Share of Energy Consumption (2000E): Natural Gas (45.2 %), Oil (36.3 %), Coal (1.5 %) Fuel Share of Carbon Emissions (2000E): Oil (48.1 %), Natural Gas (49.3 %), Coal (2.5 %) Renewable Energy Consumption (1998E): 393 trillion Btu * (0.5 % decrease from 1997) Number of People per Motor Vehicle (1998): 5.6 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (signed June 12, 1992 and ratified on March 11, Energy Consumption (2000E): 73.2 million Btu (vs. U.S. value of 351.0 million Btu) Per Capita Carbon Emissions (2000E): 1.0 metric tons of carbon (vs U.S. value of 5.6 metric tons of carbon) Energy Intensity (2000E): 9,226 Btu / $ 1995 (vs U.S. value of 10,918 Btu / $ 1995) ** Carbon Intensity (2000E): 0.12 metric tons of carbon / thousand $ 1995 (vs U.S. value of 0.17 metric tons / thousand $ 1995) ** Sectoral Share of Energy Consumption (1998E): Industrial (48.6 %), Transportation (23.7 %), Residential (18.8 %), Commercial (8.8 %) Sectoral Share of Carbon Emissions (1998E): Industrial (44.8 %), Transportation (32.7 %), Residential (16.2 %), Commercial (6.2 %) Fuel Share of Energy Consumption (2000E): Natural Gas (45.2 %), Oil (36.3 %), Coal (1.5 %) Fuel Share of Carbon Emissions (2000E): Oil (48.1 %), Natural Gas (49.3 %), Coal (2.5 %) Renewable Energy Consumption (1998E): 393 trillion Btu * (0.5 % decrease from 1997) Number of People per Motor Vehicle (1998): 5.6 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (signed June 12, 1992 and ratified on MarchConsumption (2000E): 73.2 million Btu (vs. U.S. value of 351.0 million Btu) Per Capita Carbon Emissions (2000E): 1.0 metric tons of carbon (vs U.S. value of 5.6 metric tons of carbon) Energy Intensity (2000E): 9,226 Btu / $ 1995 (vs U.S. value of 10,918 Btu / $ 1995) ** Carbon Intensity (2000E): 0.12 metric tons of carbon / thousand $ 1995 (vs U.S. value of 0.17 metric tons / thousand $ 1995) ** Sectoral Share of Energy Consumption (1998E): Industrial (48.6 %), Transportation (23.7 %), Residential (18.8 %), Commercial (8.8 %) Sectoral Share of Carbon Emissions (1998E): Industrial (44.8 %), Transportation (32.7 %), Residential (16.2 %), Commercial (6.2 %) Fuel Share of Energy Consumption (2000E): Natural Gas (45.2 %), Oil (36.3 %), Coal (1.5 %) Fuel Share of Carbon Emissions (2000E): Oil (48.1 %), Natural Gas (49.3 %), Coal (2.5 %) Renewable Energy Consumption (1998E): 393 trillion Btu * (0.5 % decrease from 1997) Number of People per Motor Vehicle (1998): 5.6 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (signed June 12, 1992 and ratified on March 11, Energy Intensity (2000E): 9,226 Btu / $ 1995 (vs U.S. value of 10,918 Btu / $ 1995) ** Carbon Intensity (2000E): 0.12 metric tons of carbon / thousand $ 1995 (vs U.S. value of 0.17 metric tons / thousand $ 1995) ** Sectoral Share of Energy Consumption (1998E): Industrial (48.6 %), Transportation (23.7 %), Residential (18.8 %), Commercial (8.8 %) Sectoral Share of Carbon Emissions (1998E): Industrial (44.8 %), Transportation (32.7 %), Residential (16.2 %), Commercial (6.2 %) Fuel Share of Energy Consumption (2000E): Natural Gas (45.2 %), Oil (36.3 %), Coal (1.5 %) Fuel Share of Carbon Emissions (2000E): Oil (48.1 %), Natural Gas (49.3 %), Coal (2.5 %) Renewable Energy Consumption (1998E): 393 trillion Btu * (0.5 % decrease from 1997) Number of People per Motor Vehicle (1998): 5.6 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (signed June 12, 1992 and ratified on March 11, Energy Consumption (1998E): Industrial (48.6 %), Transportation (23.7 %), Residential (18.8 %), Commercial (8.8 %) Sectoral Share of Carbon Emissions (1998E): Industrial (44.8 %), Transportation (32.7 %), Residential (16.2 %), Commercial (6.2 %) Fuel Share of Energy Consumption (2000E): Natural Gas (45.2 %), Oil (36.3 %), Coal (1.5 %) Fuel Share of Carbon Emissions (2000E): Oil (48.1 %), Natural Gas (49.3 %), Coal (2.5 %) Renewable Energy Consumption (1998E): 393 trillion Btu * (0.5 % decrease from 1997) Number of People per Motor Vehicle (1998): 5.6 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (signed June 12, 1992 and ratified on MarchConsumption (1998E): Industrial (48.6 %), Transportation (23.7 %), Residential (18.8 %), Commercial (8.8 %) Sectoral Share of Carbon Emissions (1998E): Industrial (44.8 %), Transportation (32.7 %), Residential (16.2 %), Commercial (6.2 %) Fuel Share of Energy Consumption (2000E): Natural Gas (45.2 %), Oil (36.3 %), Coal (1.5 %) Fuel Share of Carbon Emissions (2000E): Oil (48.1 %), Natural Gas (49.3 %), Coal (2.5 %) Renewable Energy Consumption (1998E): 393 trillion Btu * (0.5 % decrease from 1997) Number of People per Motor Vehicle (1998): 5.6 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (signed June 12, 1992 and ratified on March 11, Energy Consumption (2000E): Natural Gas (45.2 %), Oil (36.3 %), Coal (1.5 %) Fuel Share of Carbon Emissions (2000E): Oil (48.1 %), Natural Gas (49.3 %), Coal (2.5 %) Renewable Energy Consumption (1998E): 393 trillion Btu * (0.5 % decrease from 1997) Number of People per Motor Vehicle (1998): 5.6 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (signed June 12, 1992 and ratified on MarchConsumption (2000E): Natural Gas (45.2 %), Oil (36.3 %), Coal (1.5 %) Fuel Share of Carbon Emissions (2000E): Oil (48.1 %), Natural Gas (49.3 %), Coal (2.5 %) Renewable Energy Consumption (1998E): 393 trillion Btu * (0.5 % decrease from 1997) Number of People per Motor Vehicle (1998): 5.6 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (signed June 12, 1992 and ratified on March 11, Energy Consumption (1998E): 393 trillion Btu * (0.5 % decrease from 1997) Number of People per Motor Vehicle (1998): 5.6 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (signed June 12, 1992 and ratified on MarchConsumption (1998E): 393 trillion Btu * (0.5 % decrease from 1997) Number of People per Motor Vehicle (1998): 5.6 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (signed June 12, 1992 and ratified on March 11, 1994).
ENVIRONMENTAL OVERVIEW Secretary of Environment & Natural Resources: Victor Lichtinger Total Energy Consumption (2000E): 6.18 quadrillion Btu * (1.6 % of world total energy consumption) Energy - Related Carbon Emissions (2000E): 103.2 million metric tons of carbon (1.6 % of world total carbon emissions) Per Capita Energy Consumption (2000E): 62.5 million Btu (vs U.S. value of 351.0 million Btu) Per Capita Carbon Emissions (2000E): 1.0 metric tons of carbon (vs U.S. value of 5.6 metric tons of carbon) Energy Intensity (2000E): 16,509 Btu / $ 1995 (vs U.S. value of 10,918 Btu / $ 1995) ** Carbon Intensity (2000E): 0.28 metric tons of carbon / thousand $ 1995 (vs U.S. value of 0.18 metric tons / thousand $ 1995) ** Sectoral Share of Energy Consumption (1998E): Industrial (54.7 %), Transportation (24.8 %), Residential (15.9 %), Commercial (4.6 %) Sectoral Share of Carbon Emissions (1998E): Industrial (50.9 %), Transportation (31.1 %), Residential (13.2 %), Commercial (4.8 %) Fuel Share of Energy Consumption (2000E): Oil (63.2 %), Natural Gas (23.7 %), Coal (4.0 %) Fuel Share of Carbon Emissions (2000E): Oil (73.5 %), Natural Gas (20.4 %), Coal (6.2 %) Renewable Energy Consumption (1998E): 713.7 trillion Btu * (1 % decrease from 1997) Number of People per Motor Vehicle (1998): 6.9 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (ratified March 11th, Energy Consumption (2000E): 6.18 quadrillion Btu * (1.6 % of world total energy consumption) Energy - Related Carbon Emissions (2000E): 103.2 million metric tons of carbon (1.6 % of world total carbon emissions) Per Capita Energy Consumption (2000E): 62.5 million Btu (vs U.S. value of 351.0 million Btu) Per Capita Carbon Emissions (2000E): 1.0 metric tons of carbon (vs U.S. value of 5.6 metric tons of carbon) Energy Intensity (2000E): 16,509 Btu / $ 1995 (vs U.S. value of 10,918 Btu / $ 1995) ** Carbon Intensity (2000E): 0.28 metric tons of carbon / thousand $ 1995 (vs U.S. value of 0.18 metric tons / thousand $ 1995) ** Sectoral Share of Energy Consumption (1998E): Industrial (54.7 %), Transportation (24.8 %), Residential (15.9 %), Commercial (4.6 %) Sectoral Share of Carbon Emissions (1998E): Industrial (50.9 %), Transportation (31.1 %), Residential (13.2 %), Commercial (4.8 %) Fuel Share of Energy Consumption (2000E): Oil (63.2 %), Natural Gas (23.7 %), Coal (4.0 %) Fuel Share of Carbon Emissions (2000E): Oil (73.5 %), Natural Gas (20.4 %), Coal (6.2 %) Renewable Energy Consumption (1998E): 713.7 trillion Btu * (1 % decrease from 1997) Number of People per Motor Vehicle (1998): 6.9 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (ratified March 1Consumption (2000E): 6.18 quadrillion Btu * (1.6 % of world total energy consumption) Energy - Related Carbon Emissions (2000E): 103.2 million metric tons of carbon (1.6 % of world total carbon emissions) Per Capita Energy Consumption (2000E): 62.5 million Btu (vs U.S. value of 351.0 million Btu) Per Capita Carbon Emissions (2000E): 1.0 metric tons of carbon (vs U.S. value of 5.6 metric tons of carbon) Energy Intensity (2000E): 16,509 Btu / $ 1995 (vs U.S. value of 10,918 Btu / $ 1995) ** Carbon Intensity (2000E): 0.28 metric tons of carbon / thousand $ 1995 (vs U.S. value of 0.18 metric tons / thousand $ 1995) ** Sectoral Share of Energy Consumption (1998E): Industrial (54.7 %), Transportation (24.8 %), Residential (15.9 %), Commercial (4.6 %) Sectoral Share of Carbon Emissions (1998E): Industrial (50.9 %), Transportation (31.1 %), Residential (13.2 %), Commercial (4.8 %) Fuel Share of Energy Consumption (2000E): Oil (63.2 %), Natural Gas (23.7 %), Coal (4.0 %) Fuel Share of Carbon Emissions (2000E): Oil (73.5 %), Natural Gas (20.4 %), Coal (6.2 %) Renewable Energy Consumption (1998E): 713.7 trillion Btu * (1 % decrease from 1997) Number of People per Motor Vehicle (1998): 6.9 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (ratified March 11th, energy consumption) Energy - Related Carbon Emissions (2000E): 103.2 million metric tons of carbon (1.6 % of world total carbon emissions) Per Capita Energy Consumption (2000E): 62.5 million Btu (vs U.S. value of 351.0 million Btu) Per Capita Carbon Emissions (2000E): 1.0 metric tons of carbon (vs U.S. value of 5.6 metric tons of carbon) Energy Intensity (2000E): 16,509 Btu / $ 1995 (vs U.S. value of 10,918 Btu / $ 1995) ** Carbon Intensity (2000E): 0.28 metric tons of carbon / thousand $ 1995 (vs U.S. value of 0.18 metric tons / thousand $ 1995) ** Sectoral Share of Energy Consumption (1998E): Industrial (54.7 %), Transportation (24.8 %), Residential (15.9 %), Commercial (4.6 %) Sectoral Share of Carbon Emissions (1998E): Industrial (50.9 %), Transportation (31.1 %), Residential (13.2 %), Commercial (4.8 %) Fuel Share of Energy Consumption (2000E): Oil (63.2 %), Natural Gas (23.7 %), Coal (4.0 %) Fuel Share of Carbon Emissions (2000E): Oil (73.5 %), Natural Gas (20.4 %), Coal (6.2 %) Renewable Energy Consumption (1998E): 713.7 trillion Btu * (1 % decrease from 1997) Number of People per Motor Vehicle (1998): 6.9 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (ratified March 1consumption) Energy - Related Carbon Emissions (2000E): 103.2 million metric tons of carbon (1.6 % of world total carbon emissions) Per Capita Energy Consumption (2000E): 62.5 million Btu (vs U.S. value of 351.0 million Btu) Per Capita Carbon Emissions (2000E): 1.0 metric tons of carbon (vs U.S. value of 5.6 metric tons of carbon) Energy Intensity (2000E): 16,509 Btu / $ 1995 (vs U.S. value of 10,918 Btu / $ 1995) ** Carbon Intensity (2000E): 0.28 metric tons of carbon / thousand $ 1995 (vs U.S. value of 0.18 metric tons / thousand $ 1995) ** Sectoral Share of Energy Consumption (1998E): Industrial (54.7 %), Transportation (24.8 %), Residential (15.9 %), Commercial (4.6 %) Sectoral Share of Carbon Emissions (1998E): Industrial (50.9 %), Transportation (31.1 %), Residential (13.2 %), Commercial (4.8 %) Fuel Share of Energy Consumption (2000E): Oil (63.2 %), Natural Gas (23.7 %), Coal (4.0 %) Fuel Share of Carbon Emissions (2000E): Oil (73.5 %), Natural Gas (20.4 %), Coal (6.2 %) Renewable Energy Consumption (1998E): 713.7 trillion Btu * (1 % decrease from 1997) Number of People per Motor Vehicle (1998): 6.9 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (ratified March 11th, Energy - Related Carbon Emissions (2000E): 103.2 million metric tons of carbon (1.6 % of world total carbon emissions) Per Capita Energy Consumption (2000E): 62.5 million Btu (vs U.S. value of 351.0 million Btu) Per Capita Carbon Emissions (2000E): 1.0 metric tons of carbon (vs U.S. value of 5.6 metric tons of carbon) Energy Intensity (2000E): 16,509 Btu / $ 1995 (vs U.S. value of 10,918 Btu / $ 1995) ** Carbon Intensity (2000E): 0.28 metric tons of carbon / thousand $ 1995 (vs U.S. value of 0.18 metric tons / thousand $ 1995) ** Sectoral Share of Energy Consumption (1998E): Industrial (54.7 %), Transportation (24.8 %), Residential (15.9 %), Commercial (4.6 %) Sectoral Share of Carbon Emissions (1998E): Industrial (50.9 %), Transportation (31.1 %), Residential (13.2 %), Commercial (4.8 %) Fuel Share of Energy Consumption (2000E): Oil (63.2 %), Natural Gas (23.7 %), Coal (4.0 %) Fuel Share of Carbon Emissions (2000E): Oil (73.5 %), Natural Gas (20.4 %), Coal (6.2 %) Renewable Energy Consumption (1998E): 713.7 trillion Btu * (1 % decrease from 1997) Number of People per Motor Vehicle (1998): 6.9 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (ratified March 11th, Energy Consumption (2000E): 62.5 million Btu (vs U.S. value of 351.0 million Btu) Per Capita Carbon Emissions (2000E): 1.0 metric tons of carbon (vs U.S. value of 5.6 metric tons of carbon) Energy Intensity (2000E): 16,509 Btu / $ 1995 (vs U.S. value of 10,918 Btu / $ 1995) ** Carbon Intensity (2000E): 0.28 metric tons of carbon / thousand $ 1995 (vs U.S. value of 0.18 metric tons / thousand $ 1995) ** Sectoral Share of Energy Consumption (1998E): Industrial (54.7 %), Transportation (24.8 %), Residential (15.9 %), Commercial (4.6 %) Sectoral Share of Carbon Emissions (1998E): Industrial (50.9 %), Transportation (31.1 %), Residential (13.2 %), Commercial (4.8 %) Fuel Share of Energy Consumption (2000E): Oil (63.2 %), Natural Gas (23.7 %), Coal (4.0 %) Fuel Share of Carbon Emissions (2000E): Oil (73.5 %), Natural Gas (20.4 %), Coal (6.2 %) Renewable Energy Consumption (1998E): 713.7 trillion Btu * (1 % decrease from 1997) Number of People per Motor Vehicle (1998): 6.9 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (ratified March 1Consumption (2000E): 62.5 million Btu (vs U.S. value of 351.0 million Btu) Per Capita Carbon Emissions (2000E): 1.0 metric tons of carbon (vs U.S. value of 5.6 metric tons of carbon) Energy Intensity (2000E): 16,509 Btu / $ 1995 (vs U.S. value of 10,918 Btu / $ 1995) ** Carbon Intensity (2000E): 0.28 metric tons of carbon / thousand $ 1995 (vs U.S. value of 0.18 metric tons / thousand $ 1995) ** Sectoral Share of Energy Consumption (1998E): Industrial (54.7 %), Transportation (24.8 %), Residential (15.9 %), Commercial (4.6 %) Sectoral Share of Carbon Emissions (1998E): Industrial (50.9 %), Transportation (31.1 %), Residential (13.2 %), Commercial (4.8 %) Fuel Share of Energy Consumption (2000E): Oil (63.2 %), Natural Gas (23.7 %), Coal (4.0 %) Fuel Share of Carbon Emissions (2000E): Oil (73.5 %), Natural Gas (20.4 %), Coal (6.2 %) Renewable Energy Consumption (1998E): 713.7 trillion Btu * (1 % decrease from 1997) Number of People per Motor Vehicle (1998): 6.9 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (ratified March 11th, Energy Intensity (2000E): 16,509 Btu / $ 1995 (vs U.S. value of 10,918 Btu / $ 1995) ** Carbon Intensity (2000E): 0.28 metric tons of carbon / thousand $ 1995 (vs U.S. value of 0.18 metric tons / thousand $ 1995) ** Sectoral Share of Energy Consumption (1998E): Industrial (54.7 %), Transportation (24.8 %), Residential (15.9 %), Commercial (4.6 %) Sectoral Share of Carbon Emissions (1998E): Industrial (50.9 %), Transportation (31.1 %), Residential (13.2 %), Commercial (4.8 %) Fuel Share of Energy Consumption (2000E): Oil (63.2 %), Natural Gas (23.7 %), Coal (4.0 %) Fuel Share of Carbon Emissions (2000E): Oil (73.5 %), Natural Gas (20.4 %), Coal (6.2 %) Renewable Energy Consumption (1998E): 713.7 trillion Btu * (1 % decrease from 1997) Number of People per Motor Vehicle (1998): 6.9 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (ratified March 11th, Energy Consumption (1998E): Industrial (54.7 %), Transportation (24.8 %), Residential (15.9 %), Commercial (4.6 %) Sectoral Share of Carbon Emissions (1998E): Industrial (50.9 %), Transportation (31.1 %), Residential (13.2 %), Commercial (4.8 %) Fuel Share of Energy Consumption (2000E): Oil (63.2 %), Natural Gas (23.7 %), Coal (4.0 %) Fuel Share of Carbon Emissions (2000E): Oil (73.5 %), Natural Gas (20.4 %), Coal (6.2 %) Renewable Energy Consumption (1998E): 713.7 trillion Btu * (1 % decrease from 1997) Number of People per Motor Vehicle (1998): 6.9 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (ratified March 1Consumption (1998E): Industrial (54.7 %), Transportation (24.8 %), Residential (15.9 %), Commercial (4.6 %) Sectoral Share of Carbon Emissions (1998E): Industrial (50.9 %), Transportation (31.1 %), Residential (13.2 %), Commercial (4.8 %) Fuel Share of Energy Consumption (2000E): Oil (63.2 %), Natural Gas (23.7 %), Coal (4.0 %) Fuel Share of Carbon Emissions (2000E): Oil (73.5 %), Natural Gas (20.4 %), Coal (6.2 %) Renewable Energy Consumption (1998E): 713.7 trillion Btu * (1 % decrease from 1997) Number of People per Motor Vehicle (1998): 6.9 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (ratified March 11th, Energy Consumption (2000E): Oil (63.2 %), Natural Gas (23.7 %), Coal (4.0 %) Fuel Share of Carbon Emissions (2000E): Oil (73.5 %), Natural Gas (20.4 %), Coal (6.2 %) Renewable Energy Consumption (1998E): 713.7 trillion Btu * (1 % decrease from 1997) Number of People per Motor Vehicle (1998): 6.9 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (ratified March 1Consumption (2000E): Oil (63.2 %), Natural Gas (23.7 %), Coal (4.0 %) Fuel Share of Carbon Emissions (2000E): Oil (73.5 %), Natural Gas (20.4 %), Coal (6.2 %) Renewable Energy Consumption (1998E): 713.7 trillion Btu * (1 % decrease from 1997) Number of People per Motor Vehicle (1998): 6.9 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (ratified March 11th, Energy Consumption (1998E): 713.7 trillion Btu * (1 % decrease from 1997) Number of People per Motor Vehicle (1998): 6.9 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (ratified March 1Consumption (1998E): 713.7 trillion Btu * (1 % decrease from 1997) Number of People per Motor Vehicle (1998): 6.9 (vs U.S. value of 1.3) Status in Climate Change Negotiations: Non-Annex I country under the United Nations Framework Convention on Climate Change (ratified March 11th, 1993).
In contrast, the fossil fuel use per unit of GDP decreased steadily, driven primarily by greater energy efficiency and structural change (e.g. lower primary energy consumption per unit GDP).
The estimated value of global fossil - fuel consumption subsidies decreased by 15 % to $ 260 billion in 2016, the lowest level since the International Energy Agency started tracking these subsidies in the World Energy Outlook (WEO) ten years ago.
From 2010 to 2011, CO2 emissions from fossil fuel combustion decreased by 2.5 % due to: (1) a decrease in coal consumption, with increased natural gas consumption and a significant increase in hydropower used; (2) a decrease in transportation - related energy consumption due to higher fuel costs, improvements in fuel efficiency, and a reduction in miles travelled; and (3) relatively mild winter conditions resulting in an overall decrease in energy demand in most sectors.
Due to the lack of domestic oil sources, the French government has encouraged the use of nuclear power as an alternative energy source to oil where possible, and the proportion of France's total energy consumption derived from oil decreased from 71 percent in 1973 to 39 percent in 2003.
The decrease is based on a 6.1 % growth in GDP measured against a 3.04 % increase in energy consumption.
Population density also lowers energy and water use in all categories, constrains family size, limits the consumption of all kinds of goods, reduces ownership of wasteful appliances, decreases the generation of solid waste, and forces most residents to live in some of the world's most inherently energy - efficient residential structures: apartment buildings.
In the first sub-section, you can take a variety of actions, like replacing incandescent bulbs with CFLs, in three categories (home / office, transportation or carbon offsets) and preview how those will decrease your energy consumption with a carbon calculatoIn the first sub-section, you can take a variety of actions, like replacing incandescent bulbs with CFLs, in three categories (home / office, transportation or carbon offsets) and preview how those will decrease your energy consumption with a carbon calculatoin three categories (home / office, transportation or carbon offsets) and preview how those will decrease your energy consumption with a carbon calculator.
a b c d e f g h i j k l m n o p q r s t u v w x y z