Sentences with phrase «dependent kinase inhibitor»

In particular, the upregulation of the cyclin - dependent kinase inhibitor p21Cip1 / WAF1 upon LA exposure was found to be required for its anticancer properties.
Senderowicz AM, Headlee D, Stinson SF, et al: Phase I trial of continuous infusion flavopiridol, a novel cyclin - dependent kinase inhibitor, in patients with refractory neoplasms.
Additionally, we identified p21waf1 / cip1, a cyclin - dependent kinase inhibitor, as a target gene of DDX3, and the up - regulation of p21waf1 / cip1 expression accounted for the colony - suppressing activity of DDX3.
It is known that one of the pathways involved in cutaneous cancer is mediated through CDKN2A which is a gene associated with melanoma dysregulation through its pro-oncogenic products p16INK4a (Cyclin - Dependent Kinase Inhibitor P16) and p14ARF (P14 alternate open reading frame)[28].
mammalian target of rapamycin (mTOR); cyclin dependent kinase inhibitor - 2A
Glennie et al 134 have shown that T cells stimulated in co-cultures with MSC exhibit an extensive inhibition of cyclin D2 and upregulation of the cyclin dependent kinase inhibitor p27kip1.
THE STUDIES A trilogy of papers published in the September 28 issue of Nature examine the role of a protein — cyclin - dependent kinase inhibitor p16INK4a — in aging, healing, and cancer.

Not exact matches

Pfizer (pfe) breast cancer treatment Ibrance burst onto the scene in early 2015 and proceeded to dominate in a new therapeutic arena called cyclin - dependent kinase (CDK) 4 and 6 inhibitors.
They found that CD44 + / CD24 - / Low cancer stem cells (CSCs) were resistant to conventional chemotherapy but were sensitive to SU9516, which is a specific cyclin - dependent kinase 2 (Cdk2) inhibitor.
Dinaciclib is a member of a class of drugs known as cyclin - dependent kinase (CDK) inhibitors.
And it turns out that bosutinib may inhibit the activity of exactly the kinases that EGFR - dependent lung cancers need to mutate around the challenge of EGFR inhibitors.
The cell cycle progression of eukaryotic cells is well controlled by cyclin, cyclin - dependent kinases (cdk), and cdk inhibitors.
The cyclin - dependent kinase (CDK) inhibitors p21waf1 and p27kip1 and underphosphorylated retinoblastoma protein levels were up - regulated and cyclin A levels were decreased in a concentration - dependent manner (Fig. 5B and C).
Abbreviations: ASC, apoptosis - associated speck - like protein containing a caspase - recruitment domain; ATM, adipose - tissue - resident macrophage; BAT, brown adipose tissue; CCR2, CC chemokine receptor 2; CHOP, C / EBP (CCAAT / enhancer - binding protein)- homologous protein; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; ER, endoplasmic reticulum; GPCR, G - protein - coupled receptor; HIF, hypoxia - inducible factor; IFNγ, interferon γ; IKK, inhibitor of nuclear factor κB kinase; IL, interleukin; IRS - 1, insulin receptor substrate - 1; JNK, c - Jun N - terminal kinase; LDL, low - density lipoprotein; Ldlr, LDL receptor; LXR, liver X receptor; MCP - 1, monocyte chemoattractant protein 1; miRNA, microRNA; mTOR, mammalian target of rapamycin; NAFLD, non-alcoholic fatty liver disease; NF - κB, nuclear factor κB; NLRP3, NLR (nucleotide - binding - domain - and leucine - rich - repeat - containing) family, pyrin - domain - containing 3; oxLDL, oxidized LDL; PKR, double - stranded RNA - dependent protein kinase; PPAR, peroxisome - proliferator - activated receptor; STAT6, signal transducer and activator of transcription 6; SVF, stromal vascular fraction; TLR, Toll - like receptor; TNFα, tumour necrosis factor α; UPR, unfolded protein response; WAT, white adipose tissue
Conversely, JAK inhibitors did not affect MAP kinase - dependent proliferation of control autonomous cells transfected with an activated mutant of M - RAS.
Susan Amara, USA - «Regulation of transporter function and trafficking by amphetamines, Structure - function relationships in excitatory amino acid transporters (EAATs), Modulation of dopamine transporters (DAT) by GPCRs, Genetics and functional analyses of human trace amine receptors» Tom I. Bonner, USA (Past Core Member)- Genomics, G protein coupled receptors Michel Bouvier, Canada - Molecular Pharmacology of G protein - Coupled Receptors; Molecular mechanisms controlling the selectivity and efficacy of GPCR signalling Thomas Burris, USA - Nuclear Receptor Pharmacology and Drug Discovery William A. Catterall, USA (Past Core Member)- The Molecular Basis of Electrical Excitability Steven Charlton, UK - Molecular Pharmacology and Drug Discovery Moses Chao, USA - Mechanisms of Neurotophin Receptor Signaling Mark Coles, UK - Cellular differentiation, human embryonic stem cells, stromal cells, haematopoietic stem cells, organogenesis, lymphoid microenvironments, develomental immunology Steven L. Colletti, USA Graham L Collingridge, UK Philippe Delerive, France - Metabolic Research (diabetes, obesity, non-alcoholic fatty liver, cardio - vascular diseases, nuclear hormone receptor, GPCRs, kinases) Sir Colin T. Dollery, UK (Founder and Past Core Member) Richard M. Eglen, UK Stephen M. Foord, UK David Gloriam, Denmark - GPCRs, databases, computational drug design, orphan recetpors Gillian Gray, UK Debbie Hay, New Zealand - G protein - coupled receptors, peptide receptors, CGRP, Amylin, Adrenomedullin, Migraine, Diabetes / obesity Allyn C. Howlett, USA Franz Hofmann, Germany - Voltage dependent calcium channels and the positive inotropic effect of beta adrenergic stimulation; cardiovascular function of cGMP protein kinase Yu Huang, Hong Kong - Endothelial and Metabolic Dysfunction, and Novel Biomarkers in Diabetes, Hypertension, Dyslipidemia and Estrogen Deficiency, Endothelium - derived Contracting Factors in the Regulation of Vascular Tone, Adipose Tissue Regulation of Vascular Function in Obesity, Diabetes and Hypertension, Pharmacological Characterization of New Anti-diabetic and Anti-hypertensive Drugs, Hypotensive and antioxidant Actions of Biologically Active Components of Traditional Chinese Herbs and Natural Plants including Polypehnols and Ginsenosides Adriaan P. IJzerman, The Netherlands - G protein - coupled receptors; allosteric modulation; binding kinetics Michael F Jarvis, USA - Purines and Purinergic Receptors and Voltage-gated ion channel (sodium and calcium) pharmacology Pain mechanisms Research Reproducibility Bong - Kiun Kaang, Korea - G protein - coupled receptors; Glutamate receptors; Neuropsychiatric disorders Eamonn Kelly, Prof, UK - Molecular Pharmacology of G protein - coupled receptors, in particular opioid receptors, regulation of GPCRs by kinasis and arrestins Terry Kenakin, USA - Drug receptor pharmacodynamics, receptor theory Janos Kiss, Hungary - Neurodegenerative disorders, Alzheimer's disease Stefan Knapp, Germany - Rational design of highly selective inhibitors (so call chemical probes) targeting protein kinases as well as protein interaction inhibitors of the bromodomain family Andrew Knight, UK Chris Langmead, Australia - Drug discovery, GPCRs, neuroscience and analytical pharmacology Vincent Laudet, France (Past Core Member)- Evolution of the Nuclear Receptor / Ligand couple Margaret R. MacLean, UK - Serotonin, endothelin, estrogen, microRNAs and pulmonary hyperten Neil Marrion, UK - Calcium - activated potassium channels, neuronal excitability Fiona Marshall, UK - GPCR molecular pharmacology, structure and drug discovery Alistair Mathie, UK - Ion channel structure, function and regulation, pain and the nervous system Ian McGrath, UK - Adrenoceptors; autonomic transmission; vascular pharmacology Graeme Milligan, UK - Structure, function and regulation of G protein - coupled receptors Richard Neubig, USA (Past Core Member)- G protein signaling; academic drug discovery Stefan Offermanns, Germany - G protein - coupled receptors, vascular / metabolic signaling Richard Olsen, USA - Structure and function of GABA - A receptors; mode of action of GABAergic drugs including general anesthetics and ethanol Jean - Philippe Pin, France (Past Core Member)- GPCR - mGLuR - GABAB - structure function relationship - pharmacology - biophysics Helgi Schiöth, Sweden David Searls, USA - Bioinformatics Graeme Semple, USA - GPCR Medicinal Chemistry Patrick M. Sexton, Australia - G protein - coupled receptors Roland Staal, USA - Microglia and neuroinflammation in neuropathic pain and neurological disorders Bart Staels, France - Nuclear receptor signaling in metabolic and cardiovascular diseases Katerina Tiligada, Greece - Immunopharmacology, histamine, histamine receptors, hypersensitivity, drug allergy, inflammation Georg Terstappen, Germany - Drug discovery for neurodegenerative diseases with a focus on AD Mary Vore, USA - Activity and regulation of expression and function of the ATP - binding cassette (ABC) transporters
Abbreviations: Aβ, amyloid β - peptide; AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis; Ambra1, activating molecule in Beclin -1-regulated autophagy; AMPK, AMP - activated protein kinase; APP, amyloid precursor protein; AR, androgen receptor; Atg, autophagy - related; AV, autophagic vacuole; Bcl, B - cell lymphoma; BH3, Bcl - 2 homology 3; CaMKKβ, Ca2 + - dependent protein kinase kinase β; CHMP2B, charged multivesicular body protein 2B; CMA, chaperone - mediated autophagy; 2 ′ 5 ′ ddA, 2 ′, 5 ′ - dideoxyadenosine; deptor, DEP - domain containing mTOR - interacting protein; DRPLA, dentatorubral pallidoluysian atrophy; 4E - BP1, translation initiation factor 4E - binding protein - 1; Epac, exchange protein directly activated by cAMP; ER, endoplasmic reticulum; ERK1 / 2, extracellular - signal - regulated kinase 1/2; ESCRT, endosomal sorting complex required for transport; FAD, familial AD; FDA, U.S. Food and Drug Administration; FIP200, focal adhesion kinase family - interacting protein of 200 kDa; FoxO3, forkhead box O3; FTD, frontotemporal dementia; FTD3, FTD linked to chromosome 3; GAP, GTPase - activating protein; GR, guanidine retinoid; GSK3, glycogen synthase kinase 3; HD, Huntington's disease; hiPSC, human induced pluripotent stem cell; hVps, mammalian vacuolar protein sorting homologue; IKK, inhibitor of nuclear factor κB kinase; IMPase, inositol monophosphatase; IP3R, Ins (1,4,5) P3 receptor; I1R, imidazoline - 1 receptor; JNK1, c - Jun N - terminal kinase 1; LC3, light chain 3; LD, Lafora disease; L - NAME, NG - nitro - L - arginine methyl ester; LRRK2, leucine - rich repeat kinase 2; MIPS, myo - inositol -1-phosphate synthase; mLST8, mammalian lethal with SEC13 protein 8; MND, motor neuron disease; mTOR, mammalian target of rapamycin; mTORC, mTOR complex; MVB, multivesicular body; NAC, N - acetylcysteine; NBR1, neighbour of BRCA1 gene 1; NOS, nitric oxide synthase; p70S6K, ribosomal protein S6 kinase - 1; PD, Parkinson's disease; PDK1, phosphoinositide - dependent kinase 1; PE, phosphatidylethanolamine; PI3K, phosphoinositide 3 - kinase; PI3KC1a, class Ia PI3K; PI3KC3, class III PI3K; PI3KK, PI3K - related protein kinase; PINK1, PTEN - induced kinase 1; PKA, protein kinase A; PLC, phospholipase C; polyQ, polyglutamine; PS, presenilin; PTEN, phosphatase and tensin homologue deleted from chromosome 10; Rag, Ras - related GTP - binding protein; raptor, regulatory - associated protein of mTOR; Rheb, Ras homologue enriched in brain; rictor, rapamycin - insensitive companion of mTOR; SBMA, spinobulbar muscular atrophy; SCA, spinocerebellar ataxia; SLC, solute carrier; SMER, small - molecule enhancer of rapamycin; SMIR, small - molecule inhibitor of rapamycin; SNARE, N - ethylmaleimide - sensitive factor - attachment protein receptor; SOD1, copper / zinc superoxide dismutase 1; TFEB, transcription factor EB; TOR, target of rapamycin; TSC, tuberous sclerosis complex; ULK1, UNC -51-like kinase 1; UVRAG, UV irradiation resistance - associated gene; VAMP, vesicle - associated membrane protein; v - ATPase, vacuolar H + - ATPase; Vps, vacuolar protein sorting
We can clearly observe RIPK2 inhibitor 1 and 2 inhibition of MDP - dependent activation of RIPK2 autophosphorylation (on tyrosine 474) using an in vitro kinase assay in HCT116 cells (Fig. 3B).
Specifically, my research proposal addresses the mechanisms by which the kinase 3 - phosphoinoside dependent protein kinase - 1 (PDK1) mediates resistance to cell cycle related CDK4 / 6 inhibition in ER + breast cancer and explores the in vivo effects of inhibiting PDK1 in combination with CDK4 / 6 inhibitors toward ER + breast cancer growth.
Concordantly, inhibition of the cGMP - dependent protein kinase G (PKG) blocks egress induced by PKAc1 inactivation or environmental acidification, while a cGMP - phosphodiesterase inhibitor circumvents egress repression by PKAc1 or pH neutralisation.
Calcitriol induces G0 / G1 arrest, modulates p27Kipl and p21Waf1 / Cipl, the cyclin dependent kinase (cdk) inhibitors implicated in G1 arrest.
a b c d e f g h i j k l m n o p q r s t u v w x y z