Sentences with phrase «derived ice surface»

[Response: The effect on the data actually used by Steig et al for the results featured in the paper (the satellite - derived ice surface temperature estimates) is precisely zero.

Not exact matches

But the ice core - derived climate records from the Andes are also impacted from the west — specifically by El Niño, a temporary change in climate, which is driven by sea surface temperatures in the tropical Pacific.
Complementary analyses of the surface mass balance of Greenland (Tedesco et al, 2011) also show that 2010 was a record year for melt area extent... Extrapolating these melt rates forward to 2050, «the cumulative loss could raise sea level by 15 cm by 2050 ″ for a total of 32 cm (adding in 8 cm from glacial ice caps and 9 cm from thermal expansion)- a number very close to the best estimate of Vermeer & Rahmstorf (2009), derived by linking the observed rate of sea level rise to the observed warming.
This is computed from an ice sheet surface mass balance model, with the snowfall amounts and temperatures derived from a high - resolution atmospheric circulation model.
Canadian Ice Service, 4.7, Multiple Methods As with CIS contributions in June 2009, 2010, and 2011, the 2012 forecast was derived using a combination of three methods: 1) a qualitative heuristic method based on observed end - of - winter arctic ice thicknesses and extents, as well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model, which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoIce Service, 4.7, Multiple Methods As with CIS contributions in June 2009, 2010, and 2011, the 2012 forecast was derived using a combination of three methods: 1) a qualitative heuristic method based on observed end - of - winter arctic ice thicknesses and extents, as well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model, which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoice thicknesses and extents, as well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model, which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoIce Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoice predictors.
Canadian Ice Service, 4.7 (+ / - 0.2), Heuristic / Statistical (same as June) The 2015 forecast was derived by considering a combination of methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic ice thickness extents, as well as winter Surface Air Temperature, Sea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoIce Service, 4.7 (+ / - 0.2), Heuristic / Statistical (same as June) The 2015 forecast was derived by considering a combination of methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic ice thickness extents, as well as winter Surface Air Temperature, Sea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoice thickness extents, as well as winter Surface Air Temperature, Sea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoice predictors.
Changes and surface features of the Larsen Ice Shelf, Antarctica, derived from Landsat and Kosmos mosaics.
«Establishing such a steady - state surface is a prerequisite for deriving projections of future ice sheet evolution that are more credible than currently available projections.»
These satellite - derived maps show the extent of surface melt over Greenland's ice sheet during the summer of 2012...
This estimate was refined by Hansen and Nazarenko (2004), who used measured BC concentrations within snow and ice at a wide range of geographic locations to deduce the perturbation to the surface and planetary albedo, deriving an RF of +0.15 W mâ $ «2.
Canadian Ice Service; 5.0; Statistical As with Canadian Ice Service (CIS) contributions in June 2009 and June 2010, the 2011 forecast was derived using a combination of three methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic Multi-Year Ice (MYI) extents, as well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere, and sea ice predictoIce Service; 5.0; Statistical As with Canadian Ice Service (CIS) contributions in June 2009 and June 2010, the 2011 forecast was derived using a combination of three methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic Multi-Year Ice (MYI) extents, as well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere, and sea ice predictoIce Service (CIS) contributions in June 2009 and June 2010, the 2011 forecast was derived using a combination of three methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic Multi-Year Ice (MYI) extents, as well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere, and sea ice predictoIce (MYI) extents, as well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere, and sea ice predictoIce Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere, and sea ice predictoice predictors.
This paper analyzes the 420,00 o year Antarctic Vostok ice core data comparing the CO2, CH4, sea level, and surface albedo changes do derive his empirical 3 °C per 4 W / m2 climate sensitivity from the ice core data.
Canadian Ice Service, 4.7 (± 0.2), Heuristic / Statistical (same as June) The 2015 forecast was derived by considering a combination of methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic ice thickness extents, as well as winter Surface Air Temperature, Sea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoIce Service, 4.7 (± 0.2), Heuristic / Statistical (same as June) The 2015 forecast was derived by considering a combination of methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic ice thickness extents, as well as winter Surface Air Temperature, Sea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoice thickness extents, as well as winter Surface Air Temperature, Sea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoice predictors.
It has empirically derived dependencies on the chemistry and surface area of multiple species of ice nucleus (IN) aerosols.
The unusually high sea ice surface temperatures reflect a shift in ocean circulation, enhancing the import of warm, Atlantic - derived waters into the Arctic Ocean.
As with previous CIS contributions, the 2016 forecast was derived by considering a combination of methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic ice thickness / extent, as well as winter surface air temperature, spring ice conditions and the summer temperature forecast; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent time - series into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictors.
We map present - day Antarctic - wide surface velocities using Landsat 7 and 8 imagery spanning 2013 — 2015 and compare to earlier estimates derived from synthetic aperture radar, revealing heterogeneous changes in ice flow since ∼ 2008.
a b c d e f g h i j k l m n o p q r s t u v w x y z