Sentences with phrase «electron diffraction spectroscopy»

Ten exoskeleton specimens were studied, and experimental analyses were performed using laboratory techniques including scanning electron microscopy and electron diffraction spectroscopy, revealing details about the structure and chemical composition.

Not exact matches

Using transmission electron microscopy imaging and powder X-ray diffraction to study the structural characteristics of the nanoparticles and Raman and photoluminescence spectroscopies to quantify lattice strain and photoluminescence behavior, the group found a correlation between the amount of tin in the core and how well the core's lattice matched that of the cadmium - sulfide outer shell.
For this work, Goodell and colleagues including his collaborator Jody Jellison, now director of the Center for Agriculture, Food and the Environment at UMass Amherst, used a suite of investigative methods including small angle neutron scattering (SANS), sum frequency generation (SFG) spectroscopy, Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) to fully describe the process.
As a complement to laboratory techniques such as gas chromatography coupled to mass spectrometry, infrared spectroscopy, X-ray diffraction, visible and electron microscopy carried out at the Centre of Research and Restoration of French Museums, Paris, the scientists used the ultra bright X-rays on the ESRF's ID21 beamline to analyse tiny fragments taken from different sculptures.
The coatings were characterized by X-ray diffraction, UV / IR transmittance spectrophotometer, Raman spectroscopy, scanning electron microscopy and cyclic voltammetry.
At EMSL, they used X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Mössbauer spectroscopy to characterize the iron in the sediment.
He brings a variety of in situ and ex situ characterization methods to bear on the these materials, including high - resolution x-ray and ultraviolet photoelectron spectroscopy, x-ray diffraction, Rutherford backscattering, scanning transmission electron microscopy, electron energy loss spectroscopy, atom probe tomography and scanning probe microscopy.
Acronyms: XRF = x-ray fluoresencence; RBS = Rutherford Backscattering; XRD = x-ray diffraction; SEM = scanning electron microscopy; AFM = atomic force microcopy; PES = photoelectron spectroscopy, with x-rays (XPS) and ultraviolet (UPS); KP = Kelvin probe measurements, SECM = scanning electrochemical microscopy, PL = photoluminescence; FTIR = Fourier transform infrared spectroscopy
Tags for this Online Resume: Atomic Force Microscopy (AFM), Spin Coating, Sputter Coating, RAMAN Spectroscopy, Thermal Gravimetric Analysis (TGA), Solar Simulators for solar cell testing, Tube Furnaces, Chemical Vapor Deposition, Electrochemical Workstation, X-Ray diffraction, Solid Works, Pov Ray, C, Basic, Visual Basic, Root, Scanning Electron Microscopy with X-ray microanalysis (SEM - EDS), STM (Scanning Tunneling Microscopy), Graphene, Nanotechnology, Carbon Nanotubes, Thin Films, AutoCAD, Solidworks
Professional Duties & Responsibilities Biomedical and biotechnology engineer with background in design of biomaterials, biosensors, drug delivery devices, microfrabrication, and tissue engineering Working knowledge of direct cell writing and rapid prototyping Experience fabricating nanocomposite hydrogel scaffolds Proficient in material analysis, mechanical, biochemical, and morphological testing of synthetic and biological materials Extensive experience in bio-imaging processes and procedures Specialized in mammalian, microbial, and viral cell culture Working knowledge of lab techniques and instruments including electrophoresis, chromatography, microscopy, spectroscopy, PCR, Flow cytometery, protein assay, DNA isolation techniques, polymer synthesis and characterization, and synthetic fiber production Developed strong knowledge of FDA, GLP, GMP, GCP, and GDP regulatory requirements Created biocompatible photocurable hydrogels for cell immobilization Formulated cell friendly prepolymer formulation Performed surface modification of nano - particle fillers to enhance their biocompatibility Evaluated cell and biomaterial interaction, cell growth, and proliferation Designed bench - top experiments and protocols to simulate in vivo situations Designed hydrogel based microfluidic prototypes for cell entrapment and cell culture utilizing computer - aided robotic dispenser Determined various mechanical, morphological, and transport properties of photocured hydrogels using Instron, FTIR, EDX, X-ray diffraction, DSC, TGA, and DMA Assessed biocompatibility of hydrogels and physiology of entrapped cells Evaluated intracellular and extracellular reactions of entrapped cells on spatial and temporal scales using optical, confocal, fluorescence, atomic force, and scanning electron microscopies Designed various biochemical assays Developed thermosensitive PET membranes for transdermal drug delivery application using Gamma radiation induced graft co-polymerization of N - isopropyl acylamide and Acrylic acid Characterized grafted co-polymer using various polymer characterization techniques Manipulated lower critical solution temperature of grafted thermosensitive co-polymer Loaded antibiotic on grafted co-polymer and determined drug release profile with temperature Determined biomechanical and biochemical properties of biological gels isolated from marine organisms Analyzed morphological and mechanical properties of metal coated yarns using SEM and Instron Performed analytical work on pharmaceutical formulations using gas and high performance liquid chromatography Performed market research and analysis for medical textile company Developed and implement comprehensive marketing and sales campaign
a b c d e f g h i j k l m n o p q r s t u v w x y z