Sentences with phrase «equilibrium temperature for»

Conservation of energy and a global radiative energy transport equilibrium temperature for the earth are two unrelated concepts.
The only comment I agree with is that the shell does not transfer «heat» to the sphere (by definition of heat transfer), but it does cause the sphere to heat up due to the transfer of back radiation energy (you can have energy transfer both ways, but heat transfer only refers to NET energy transfer), and this requires a higher sphere equilibrium temperature for a given energy net transfer for net energy balance.
Consequently, we can only derive a temperature from a local radiation balance because the uniform equilibrium temperature for the whole globe has nothing to do with the local radiation balance
The equilibrium temperature for a fixed forcing F is then given by the smallest positive root of the expression F - f (T).
Absent other factors and positive feedbacks and ALL else equal, and I do mean ALL ELSE, there should be a particular equilibrium temperature for any given persistent concentration of aerosols.
Regarding the example of the true sensitivity distribution of the black - box climate model: If the model were stochastic and path - dependent, it could be that different realizations would converge to different equilibrium temperatures for the same forcings.

Not exact matches

The idea of climate inertia is that when you increase the CO2 concentration in the atmosphere it takes the climate system a good deal of time for all its components to fully adjust and reach a new equilibrium temperature.
Recently observations of the light reflected by these planets provided insight on the cloud distribution on the dayside of these planets: for a handful of planets clouds seem more abundant on the western than on the eastern side of the dayside hemisphere and, more importantly, this asymmetry depends on the equilibrium temperature of the planet.
Since a planet's radius and equilibrium temperature depends on the parameters of its host star, our study provides more precise planetary parameters for planets and candidates orbiting late - type stars observed with K2.
Climate sensitivity is a measure of the equilibrium global surface air temperature change for a particular forcing.
Forecast temperature trends for time scales of a few decades or less are not very sensitive to the model's equilibrium climate sensitivity (reference provided).
The radiative equilibrium temperature is 262K for a planet in Kepler - 22b's orbit.
For each planetary candidate, the equilibrium surface temperatures are derived from «grey - body spheres without atmospheres... [and] calculations assume a Bond albedo of 0.3, emissivity of 0.9, and a uniform surface temperature... [with uncertainties of] approximately 22 %... because of uncertainties in the stellar size, mass, and temperature as well as the planetary albedo.»
ACT - activated clotting time (bleeding disorders) ACTH - adrenocorticotropic hormone (adrenal gland function) Ag - antigen test for proteins specific to a disease causing organism or virus Alb - albumin (liver, kidney and intestinal disorders) Alk - Phos, ALP alkaline phosphatase (liver and adrenal disorders) Allergy Testing intradermal or blood antibody test for allergen hypersensitivity ALT - alanine aminotransferase (liver disorder) Amyl - amylase enzyme — non specific (pancreatitis) ANA - antinuclear antibody (systemic lupus erythematosus) Anaplasmosis Anaplasma spp. (tick - borne rickettsial disease) APTT - activated partial thromboplastin time (blood clotting ability) AST - aspartate aminotransferase (muscle and liver disorders) Band band cell — type of white blood cell Baso basophil — type of white blood cell Bile Acids digestive acids produced in the liver and stored in the gall bladder (liver function) Bili bilirubin (bile pigment responsible for jaundice from liver disease or RBC destruction) BP - blood pressure measurement BUN - blood urea nitrogen (kidney and liver function) Bx biopsy C & S aerobic / anaerobic bacterial culture and antibiotic sensitivity test (infection, drug selection) Ca +2 calcium ion — unbound calcium (parathyroid gland function) CBC - complete blood count (all circulating cells) Chol cholesterol (liver, thyroid disorders) CK, CPK creatine [phospho] kinase (muscle disease, heart disease) Cl - chloride ion — unbound chloride (hydration, blood pH) CO2 - carbon dioxide (blood pH) Contrast Radiograph x-ray image using injected radiopaque contrast media Cortisol hormone produced by the adrenal glands (adrenal gland function) Coomb's anti- red blood cell antibody test (immune - mediated hemolytic anemia) Crea creatinine (kidney function) CRT - capillary refill time (blood pressure, tissue perfusion) DTM - dermatophyte test medium (ringworm — dermatophytosis) EEG - electroencephalogram (brain function, epilepsy) Ehrlichia Ehrlichia spp. (tick - borne rickettsial disease) EKG, ECG - electrok [c] ardiogram (electrical heart activity, heart arryhthmia) Eos eosinophil — type of white blood cell Fecal, flotation, direct intestinal parasite exam FeLV Feline Leukemia Virus test FIA Feline Infectious Anemia: aka Feline Hemotrophic Mycoplasma, Haemobartonella felis test FIV Feline Immunodeficiency Virus test Fluorescein Stain fluorescein stain uptake of cornea (corneal ulceration) fT4, fT4ed, freeT4ed thyroxine hormone unbound by protein measured by equilibrium dialysis (thyroid function) GGT gamma - glutamyltranferase (liver disorders) Glob globulin (liver, immune system) Glu blood or urine glucose (diabetes mellitus) Gran granulocytes — subgroup of white blood cells Hb, Hgb hemoglobin — iron rich protein bound to red blood cells that carries oxygen (anemia, red cell mass) HCO3 - bicarbonate ion (blood pH) HCT, PCV, MHCT hematocrit, packed - cell volume, microhematocrit (hemoconcentration, dehydration, anemia) K + potassium ion — unbound potassium (kidney disorders, adrenal gland disorders) Lipa lipase enzyme — non specific (pancreatitis) LYME Borrelia spp. (tick - borne rickettsial disease) Lymph lymphocyte — type of white blood cell MCHC mean corpuscular hemoglobin concentration (anemia, iron deficiency) MCV mean corpuscular volume — average red cell size (anemia, iron deficiency) Mg +2 magnesium ion — unbound magnesium (diabetes, parathyroid function, malnutrition) MHCT, HCT, PCV microhematocrit, hematocrit, packed - cell volume (hemoconcentration, dehydration, anemia) MIC minimum inhibitory concentration — part of the C&S that determines antimicrobial selection Mono monocyte — type of white blood cell MRI magnetic resonance imaging (advanced tissue imaging) Na + sodium ion — unbound sodium (dehydration, adrenal gland disease) nRBC nucleated red blood cell — immature red blood cell (bone marrow damage, lead toxicity) PCV, HCT, MHCT packed - cell volume, hematocrit, microhematocrit (hemoconcentration, dehydration, anemia) PE physical examination pH urine pH (urinary tract infection, urolithiasis) Phos phosphorus (kidney disorders, ketoacidosis, parathyroid function) PLI pancreatic lipase immunoreactivity (pancreatitis) PLT platelet — cells involved in clotting (bleeding disorders) PT prothrombin time (bleeding disorders) PTH parathyroid hormone, parathormone (parathyroid function) Radiograph x-ray image RBC red blood cell count (anemia) REL Rocky Mountain Spotted Fever / Ehrlichia / Lyme combination test Retic reticulocyte — immature red blood cell (regenerative vs. non-regenerative anemia) RMSF Rocky Mountain Spotted Fever SAP serum alkaline phosphatase (liver disorders) Schirmer Tear Test tear production test (keratoconjunctivitis sicca — dry eye,) Seg segmented neutrophil — type of white blood cell USG Urine specific gravity (urine concentration, kidney function) spec cPL specific canine pancreatic lipase (pancreatitis)-- replaces the PLI test spec fPL specific feline pancreatic lipase (pancreatitis)-- replaces the PLI test T4 thyroxine hormone — total (thyroid gland function) TLI trypsin - like immunoreactivity (exocrine pancreatic insufficiency) TP total protein (hydration, liver disorders) TPR temperature / pulse / respirations (physical exam vital signs) Trig triglycerides (fat metabolism, liver disorders) TSH thyroid stimulating hormone (thyroid gland function) UA urinalysis (kidney function, urinary tract infection, diabetes) Urine Cortisol - Crea Ratio urine cortisol - creatine ratio (screening test for adrenal gland disease) Urine Protein - Crea Ratio urine protein - creatinine ratio (kidney disorders) VWF VonWillebrands factor (bleeding disorder) WBC white blood cell count (infection, inflammation, bone marrow suppression)
[1] CO2 absorbs IR, is the main GHG, human emissions are increasing its concentration in the atmosphere, raising temperatures globally; the second GHG, water vapor, exists in equilibrium with water / ice, would precipitate out if not for the CO2, so acts as a feedback; since the oceans cover so much of the planet, water is a large positive feedback; melting snow and ice as the atmosphere warms decreases albedo, another positive feedback, biased toward the poles, which gives larger polar warming than the global average; decreasing the temperature gradient from the equator to the poles is reducing the driving forces for the jetstream; the jetstream's meanders are increasing in amplitude and slowing, just like the lower Missippi River where its driving gradient decreases; the larger slower meanders increase the amplitude and duration of blocking highs, increasing drought and extreme temperatures — and 30,000 + Europeans and 5,000 plus Russians die, and the US corn crop, Russian wheat crop, and Aussie wildland fire protection fails — or extreme rainfall floods the US, France, Pakistan, Thailand (driving up prices for disk drives — hows that for unexpected adverse impacts from AGW?)
There is still a rather broad range of expected equilibrium global temperature response for CO2 doubling of between 2 to 4.5 degree C.
(Even for a relatively simple example of a gray medium, calculating the equilibrium temperature profile within a homogeneous slab involves a singular Fredholm integral equation of the second kind as described by M. N. Ozisik in Radiative Transfer (1973).)
What happens at the «top of atmosphere» — the level where outgoing radiation leaves for space, not itself a very easy concept — is the restoration of equilibrium, the increase in temperature that, through Helmholtz - Boltzmann at the Earth's brightness temperature 255K, restores the balance between incoming and outgoing energies.
For these types of radiative climate forcings the atmospheric temperature profile will be shifted basically unchanged to its new equilibrium position.
Plugging S = 1367.6 and A = 0.306 into the equation above, we find that F is about 237 watts per square meter for the Earth, corresponding to an «equilibrium temperature» (or «emission temperature,» or «effective temperature») of 254 ° K. Most formulations use a slightly different S and A and get 255 ° K.
Would the temperature of the contents of flasks containing CO2, air, CH4, Ar, etc, differ after standing sufficient time for equilibrium — in the sun, in the dark, or wherever.
The Enhanced GH Effects model for adding GHGs FAILS to account for the gases reaching equilibrium temperature per the gas law, and then refusing to accept more energy absorption.
It's my understanding that the earth is not in thermal equilibrium, right now, so that a 50 % reduction in CO2 would not stop temperatures rising for a while.
As a proxy for this you could take the difference between current mean temperature and the equilibrium mean temperature for current forcing.
An parcel means that the medium is small enough to be isothermal and in local thermodynamic equilibrium (which then ensures that the population of thermodynamic molecular energy levels will be set by molecular collisions at the local atmospheric temperature), but the parcel is also large enough to contain a large enough sample of molecules to represent a statistically significant mass of air for thermodynamics to apply.
What the CO2 (both «cold, hot and warm CO2 ′) and other gasses do is to make the atmosphere more optically thick to thermal IR radiation emitted (mainly) from the Earth's surface [note2] which has consequences for the equilibrium temperature profile of the atmosphere.
This leads to a higher equilibrium temperature, but balance is reestablished again in a sense that time averages of energy in - and - out are equal for each volume element, given some fixed elevation of greenhouse gas concentration.
# 192 «For example a strengthening of wind over some oceanic region http://web.science.unsw.edu.au/~matthew/nclimate2106-incl-SI.pdf then would increase the heat flow atmosphere - > ocean, leading to lower (dynamic) equilibrium temperature in the atmosphere which of course occurs very fast, as the thermal mass of the atmosphere is very low compared to the net energy throughput.»
Climate sensitivity is a measure of the equilibrium global surface air temperature change for a particular forcing.
(The actual equilibrium takes on the order of a few thousand years, the mixing time of the oceans, to reach... But that's at constant temperature... So if the oceans warm significantly, then we lock in a new equilibrium, at higher atmospheric CO2 for much longer timescales.)
Nonetheless, there is a tendency for similar equilibrium climate sensitivity ECS, especially using a Charney ECS defined as equilibrium global time average surface temperature change per unit tropopause - level forcing with stratospheric adjustment, for different types of forcings (CO2, CH4, solar) if the forcings are not too idiosyncratic.
I never asserted that sensitivity in terms of equilibrium time - average surface temperature change per unit change in TOA or even tropopause - level forcing (with or without stratospheric adjustment) would be the same for each type of forcing for each climatic state and the external forcings that maintain it (or for that matter, for each of those different of forcings (TOA vs tropopause, etc.) with everything held constant.
Starting from an old equilbrium, a change in radiative forcing results in a radiative imbalance, which results in energy accumulation or depletion, which causes a temperature response that approahes equilibrium when the remaining imbalance approaches zero — thus the equilibrium climatic response, in the global - time average (for a time period long enough to characterize the climatic state, including externally imposed cycles (day, year) and internal variability), causes an opposite change in radiative fluxes (via Planck function)(plus convective fluxes, etc, where they occur) equal in magnitude to the sum of the (externally) imposed forcing plus any «forcings» caused by non-Planck feedbacks (in particular, climate - dependent changes in optical properties, + etc.).)
Hegerl et al (2006) for example used comparisons during the pre-industrial of EBM simulations and proxy temperature reconstructions based entirely or partially on tree - ring data to estimate the equilibrium 2xCO2 climate sensitivity, arguing for a substantially lower 5 % -95 % range of 1.5 — 6.2 C than found in several previous studies.
[Response: Questions 3 and 4 only specify a certain time point, and thus appear (to me) to be asking for the transient, not equilibrium, temperature changes.
In this case the CO2 concentration is instantaneously quadrupled and kept constant for 150 years of simulation, and both equilibrium climate sensitivity and RF are diagnosed from a linear fit of perturbations in global mean surface temperature to the instantaneous radiative imbalance at the TOA.
The Planck function describes an equilibrium intensity for a type of photon, as a function of temperature.
For example, if the Earth got cold enough, the encroachment of snow and ice toward low latitudes (where they have more sunlight to reflect per unit area), depending on the meridional temperature gradient, could become a runaway feedback — any little forcing that causes some cooling will cause an expansion of snow and ice toward lower latitudes sufficient to cause so much cooling that the process never reaches a new equilibrium — until the snow and ice reach the equator from both sides, at which point there is no more area for snow and ice to expand inFor example, if the Earth got cold enough, the encroachment of snow and ice toward low latitudes (where they have more sunlight to reflect per unit area), depending on the meridional temperature gradient, could become a runaway feedback — any little forcing that causes some cooling will cause an expansion of snow and ice toward lower latitudes sufficient to cause so much cooling that the process never reaches a new equilibrium — until the snow and ice reach the equator from both sides, at which point there is no more area for snow and ice to expand infor snow and ice to expand into.
This simple radiative example (convective transport is not being allowed) shows that any finite surface temperature Ts can be supported in radiative equilibrium with any arbitrarily cold «upper atmosphere» temperature Tt, by prescribing the appropriate LW opacity TAU for the atmospheric layer, with the energy required to maintain a fixed Ts adjusted accordingly.
How about this brutally simplified calculation for a lower bound of equilibrium temperature sensitivity: — there seems to be a consensus that transient t.s. < equilibrium t.s. — today, the trend line is a + 1 C (see Columbia graph)-- CO2 is at 410, which is 1.46 * 280 — rise is logarithmic, log (base2) of 1.46 = 0.55 — 1/0.55 = 1.8 — therefore, a lower bound for ETS is 1.8 C
I.absorbed / I.incident = absorptivity; I.absorbed = I.emitted; I.incident = B.emitted (because they have the same brightness temperature, where B.emitted is what would be emitted by a blackbody, and is what would be in equilibrium with matter at that temperature), emissivity = I.emitted / B.emitted; therefore, given that absorptivity is independent of incident intensity but is fixed for that material at that temperature at LTE, and the emitted intensity is also independent of incident intensity but is fixed for that material at that temperature, emissivity (into a direction) = absorptivity (from a direction).
Depending on meridional heat transport, when freezing temperatures reach deep enough towards low - latitudes, the ice - albedo feedback can become so effective that climate sensitivity becomes infinite and even negative (implying unstable equilibrium for any «ice - line» (latitude marking the edge of ice) between the equator and some other latitude).
The skin layer planet is optically very thin, so it doesn't affect the OLR significantly, but (absent direct solar heating) the little bit of the radiant flux (approximatly equal to the OLR) from below that it absorbs must be (at equilibrium) balanced by emission, which will be both downward and upward, so the flux emitted in either direction is only half of what was absorbed from below; via Kirchhoff's Law, the temperature must be smaller than the brightness temperature of the OLR (for a grey gas, Tskin ^ 4 ~ = (Te ^ 4) / 2, where Te is the effective radiating temperature for the planet, equal to the brightness temperature of the OLR — *** HOWEVER, see below ***).
The climate commitment studies show that temperature increases are significant for the first century and equilibrium sea level rise can take a millenium.
For an optically thick stratosphere, for full equilibrium, the same temperature profile is compressed towards TOA, except where the flux from the troposphere + surface requires some deviatiFor an optically thick stratosphere, for full equilibrium, the same temperature profile is compressed towards TOA, except where the flux from the troposphere + surface requires some deviatifor full equilibrium, the same temperature profile is compressed towards TOA, except where the flux from the troposphere + surface requires some deviation.
«Forecast temperature trends for time scales of a few decades or less are not very sensitive to the model's equilibrium climate sensitivity (reference provided).
As more optical thickness is added to a «new» band, it will gain greater control over the temperature profile, but eventually, the equilibrium for that band will shift towards a cold enough upper atmosphere and warm enough lower atmosphere and surface, such that farther increases will cool the upper atmosphere or just that portion near TOA while warming the lower atmosphere and surface — until the optical thickness is so large (relative to other bands) that the band loses influence (except at TOA) and has little farther effect (except at TOA).
The equilibrium profile for each band varies over wavelength at the same optical thickness, with larger temperature variations at longer wavelengths.
«According to the radiative - convective equilibrium concept, the equation for determining global average surface temperature of the planet is
Re my 441 — competing bands — To clarify, the absorption of each band adds to a warming effect of the surface + troposphere; given those temperatures, there are different equilibrium profiles of the stratosphere (and different radiative heating and cooling rates in the troposphere, etc.) for different amounts of absorption at different wavelengths; the bands with absorption «pull» on the temperature profile toward their equilibria; disequilibrium at individual bands is balanced over the whole spectrum (with zero net LW cooling, or net LW cooling that balances convective and solar heating).
a b c d e f g h i j k l m n o p q r s t u v w x y z