Sentences with phrase «eukaryotic cells do»

Not exact matches

Did an ancient extinction spur the rise of photosynthesis, or the emergence of eukaryotic cells, or the appearance of the first predatory microbes?
This is because yeast is eukaryotic: its cells have a membrane - bound nucleus that contains the genetic material, whereas bacteria are prokaryotic and do not.
We know that the eukaryotic cell is of ancient origin, but we do not yet know the evolutionary dynamic that underlies its formation.»
To demonstrate that the mammalian cells did not acquire bacterial genes by non-conjugational means — for example, by engulfing the bacteria, as eukaryotic cells sometimes do — Waters added an enzyme that digests DNA outside the cell membrane.
Spectroscopy & Application of Lasers, Zare / Moerner / +, 6 - 1 Nuclear Hormone Signaling, Chambon / Evans / Jensen, 6 - 1 Bioinorganic Chemistry, Gray / Lippard / Holm / — , 8 - 1 The Field (everything not listed), 10 - 1 Techniques in DNA Synthesis, Caruthers / Hood / +, 10 - 1 Electrochemistry / Electron Transfer, Bard / Hush / Gray / — , 19 - 1 Instrumentation / Techniques in Genomics, Venter / +, 19 - 1 Biological Membrane Vesicles, Rothman / Schekman / +, 19 - 1 Molecular Studies of Gene Recognition, Ptashne, 19 - 1 Organic Electronics, Tang / +, 39 - 1 Polymer Science, Matyjaszewski / Langer / + / — 69 - 1 Solar Cells, Grätzel / +, 74 - 1 Mechanistic Enzymology, Walsh / Stubbe / Koshland / + / — , 74 - 1 Combinatorial Chemistry / DOS, Schreiber / +, 99 - 1 Pigments of Life, Battersby / +, 99 - 1 Development of the Birth Control Pill, Djerassi, 99 - 1 Molecular Modeling and Assorted Applications, Karplus / Houk / Schleyer / Miller / + / — , 99 - 1 Applications of NMR Spectroscopy, Pines / Roberts / McConnell / + / — , 99 - 1 Development of Chemical Biology, Schultz / Schreiber / +, 99 - 1 Self - Assembly, Whitesides / Nuzzo / Stang / — , 149 - 1 Small Regulatory RNA, Ambros / Baulcombe / Ruvkun, 149 - 1 Nanotechnology, Lieber / Whitesides / Alivisatos / Mirkin / Seeman / + / — , 149 - 1 Eukaryotic RNA Polymerases, Roeder, 149 - 1 Contributions to Theoretical Physical Chemistry, Rice / +, 149 - 1 Mechanical Bonds and Applications, Sauvage / Stoddart / +, 149 - 1 Bio - & Organo - catalysis, List / Lerner / Barbas / + / — , 149 - 1 Organic Synthesis, Evans / Danishefsky / Nicolaou / Ley / Trost / Stork / Wender / Kishi / + / — , 199 - 1 Leptin, Coleman / Friedman / Leong, 199 - 1 Fluorocarbons, DuPont / Curran / — , 199 - 1 Understanding of Organic Stereochemistry, Mislow, 199 - 1 Tissue Engineering, Langer / +, 199 - 1 Contributions to Bioorganic Chemistry, Breslow / Eschenmoser / +, 199 - 1 Dendrimers, Frechet / Tomalia / +, 399 - 1 Zeolites, Flanigan, 399 - 1 Molecular Recognition, Dervan / +, 399 - 1 Molecular Machines, Stoddart / Tour / + / — , 399 - 1 Astrochemistry, Oka, 999 - 1
My research is framed within the Wellcome Trust consortium on the archaeal origins of eukaryotic cell organization (http://evocyt.com/), which includes a diverse group of researchers studying the evolution of eukaryotic machinery from different points of view — e.g. how do specific cellular systems work in different lineages, and how did that affect the origin of the eukaryotic cell plan?
What do organelles look like in a eukaryotic cell?
a b c d e f g h i j k l m n o p q r s t u v w x y z