Sentences with phrase «extreme changes in atmospheric temperature»

Not exact matches

While the changes in both the mean and higher order statistical moments (e.g., variance) of time - series of climate variables affect the frequency of relatively simple extremes (e.g., extreme high daily or monthly temperatures, damaging winds), changes in the frequency of more complex extremes are based on changes in the occurrence of complex atmospheric phenomena (e.g., hurricanes, tornadoes, ice storms).
For example, let's say that evidence convinced me (in a way that I wasn't convinced previously) that all recent changes in land surface temperatures and sea surface temperatures and atmospheric temperatures and deep sea temperatures and sea ice extent and sea ice volume and sea ice density and moisture content in the air and cloud coverage and rainfall and measures of extreme weather were all directly tied to internal natural variability, and that I can now see that as the result of a statistical modeling of the trends as associated with natural phenomena.
«We're seeing increasing temperatures and relatively little change in average precipitation, but an increase in the variability and the occurrence of both wet and dry extremes,» said Daniel Swain, an atmospheric scientist at Stanford's School of Earth, Energy & Environmental Sciences and the lead author of a new paper published in Science Advances.
Lamont's Ryan Abernathey and Richard Seager are studying how changes in the ocean cause sea surface temperature to vary, and how these anomalies drive changes in atmospheric circulation to create extreme weather events.
This Section places particular emphasis on current knowledge of past changes in key climate variables: temperature, precipitation and atmospheric moisture, snow cover, extent of land and sea ice, sea level, patterns in atmospheric and oceanic circulation, extreme weather and climate events, and overall features of the climate variability.
This report discusses our current understanding of the mechanisms that link declines in Arctic sea ice cover, loss of high - latitude snow cover, changes in Arctic - region energy fluxes, atmospheric circulation patterns, and the occurrence of extreme weather events; possible implications of more severe loss of summer Arctic sea ice upon weather patterns at lower latitudes; major gaps in our understanding, and observational and / or modeling efforts that are needed to fill those gaps; and current opportunities and limitations for using Arctic sea ice predictions to assess the risk of temperature / precipitation anomalies and extreme weather events over northern continents.
These include increased average land and ocean temperatures that lead to reduced snowpack levels, hydrological changes, and sea level rise; changing precipitation patterns that will create both drought and extreme rain events; and increasing atmospheric CO2 that will contribute to ocean acidification, changes in species composition, and increased risk of fires.
In general, the pattern of change in return values for 20 - year extreme temperature events from an equilibrium simulation for doubled CO2 with a global atmospheric model coupled to a non-dynamic slab ocean shows moderate increases over oceans and larger increases over land masses (Zwiers and Kharin, 1998; Figure 9.29In general, the pattern of change in return values for 20 - year extreme temperature events from an equilibrium simulation for doubled CO2 with a global atmospheric model coupled to a non-dynamic slab ocean shows moderate increases over oceans and larger increases over land masses (Zwiers and Kharin, 1998; Figure 9.29in return values for 20 - year extreme temperature events from an equilibrium simulation for doubled CO2 with a global atmospheric model coupled to a non-dynamic slab ocean shows moderate increases over oceans and larger increases over land masses (Zwiers and Kharin, 1998; Figure 9.29).
Full text here: Contribution of changes in atmospheric circulation patterns to extreme temperature trends.
a b c d e f g h i j k l m n o p q r s t u v w x y z