Sentences with phrase «factor in embryonic stem cells»

Suppose you run a ChIP - seq experiment (think «GPS for proteins») for NANOG, an essential transcription factor in embryonic stem cells (ESCs).

Not exact matches

(Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts Nature Biotechnology)
All of the mice produced normal amounts of SOX2 during development, when the transcription factor plays a critical role in the genesis of embryonic and neural stem cells.
Whitehead Institute researchers have determined that the transcription factor Nanog, which plays a critical role in the self - renewal of embryonic stem cells, is expressed in a manner similar to other pluripotency markers.
Mouse embryonic stem cells stained for key pluripotency markersGRAZIANO MARTELLO Combining computer science algorithms with biological data has enabled researchers to create a model of the minimal number of factors necessary for mouse embryonic stem cells (ESCs) to self - renew in culture.
Current efforts, mostly conducted in animal models, involve attempting to derive and aggregate embryonic stem cells, exposing them to such factors as acetic acid, allowing them to differentiate, or specialize, and then sorting through these cells to extract the cell types of interest.
In particular, we are interested in the role of transcription factor interactions for the regulation of pluripotentcy in embryonic (ES) and induced pluripotent stem (iPS) cellIn particular, we are interested in the role of transcription factor interactions for the regulation of pluripotentcy in embryonic (ES) and induced pluripotent stem (iPS) cellin the role of transcription factor interactions for the regulation of pluripotentcy in embryonic (ES) and induced pluripotent stem (iPS) cellin embryonic (ES) and induced pluripotent stem (iPS) cells.
Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat heart.
They made adult fibroblastic mouse cells become essentially mouse embryonic stem cells, in appearance and function, by forcing the fibroblasts to express four key embryonic stem cell factors: Oct - 4, Sox2, Klf4, and c - Myc.
They made adult mouse cells become essentially mouse embryonic stem cells, in appearance and function, by forcing the adult cells to produce four key protein factors.
He seeks to understand the molecular mechanisms that underlie pluripotency and the rapid proliferation of embryonic stem cells — they can become any type of cell in the body — and to identify the factors that induce reprogramming.
Susan Amara, USA - «Regulation of transporter function and trafficking by amphetamines, Structure - function relationships in excitatory amino acid transporters (EAATs), Modulation of dopamine transporters (DAT) by GPCRs, Genetics and functional analyses of human trace amine receptors» Tom I. Bonner, USA (Past Core Member)- Genomics, G protein coupled receptors Michel Bouvier, Canada - Molecular Pharmacology of G protein - Coupled Receptors; Molecular mechanisms controlling the selectivity and efficacy of GPCR signalling Thomas Burris, USA - Nuclear Receptor Pharmacology and Drug Discovery William A. Catterall, USA (Past Core Member)- The Molecular Basis of Electrical Excitability Steven Charlton, UK - Molecular Pharmacology and Drug Discovery Moses Chao, USA - Mechanisms of Neurotophin Receptor Signaling Mark Coles, UK - Cellular differentiation, human embryonic stem cells, stromal cells, haematopoietic stem cells, organogenesis, lymphoid microenvironments, develomental immunology Steven L. Colletti, USA Graham L Collingridge, UK Philippe Delerive, France - Metabolic Research (diabetes, obesity, non-alcoholic fatty liver, cardio - vascular diseases, nuclear hormone receptor, GPCRs, kinases) Sir Colin T. Dollery, UK (Founder and Past Core Member) Richard M. Eglen, UK Stephen M. Foord, UK David Gloriam, Denmark - GPCRs, databases, computational drug design, orphan recetpors Gillian Gray, UK Debbie Hay, New Zealand - G protein - coupled receptors, peptide receptors, CGRP, Amylin, Adrenomedullin, Migraine, Diabetes / obesity Allyn C. Howlett, USA Franz Hofmann, Germany - Voltage dependent calcium channels and the positive inotropic effect of beta adrenergic stimulation; cardiovascular function of cGMP protein kinase Yu Huang, Hong Kong - Endothelial and Metabolic Dysfunction, and Novel Biomarkers in Diabetes, Hypertension, Dyslipidemia and Estrogen Deficiency, Endothelium - derived Contracting Factors in the Regulation of Vascular Tone, Adipose Tissue Regulation of Vascular Function in Obesity, Diabetes and Hypertension, Pharmacological Characterization of New Anti-diabetic and Anti-hypertensive Drugs, Hypotensive and antioxidant Actions of Biologically Active Components of Traditional Chinese Herbs and Natural Plants including Polypehnols and Ginsenosides Adriaan P. IJzerman, The Netherlands - G protein - coupled receptors; allosteric modulation; binding kinetics Michael F Jarvis, USA - Purines and Purinergic Receptors and Voltage-gated ion channel (sodium and calcium) pharmacology Pain mechanisms Research Reproducibility Bong - Kiun Kaang, Korea - G protein - coupled receptors; Glutamate receptors; Neuropsychiatric disorders Eamonn Kelly, Prof, UK - Molecular Pharmacology of G protein - coupled receptors, in particular opioid receptors, regulation of GPCRs by kinasis and arrestins Terry Kenakin, USA - Drug receptor pharmacodynamics, receptor theory Janos Kiss, Hungary - Neurodegenerative disorders, Alzheimer's disease Stefan Knapp, Germany - Rational design of highly selective inhibitors (so call chemical probes) targeting protein kinases as well as protein interaction inhibitors of the bromodomain family Andrew Knight, UK Chris Langmead, Australia - Drug discovery, GPCRs, neuroscience and analytical pharmacology Vincent Laudet, France (Past Core Member)- Evolution of the Nuclear Receptor / Ligand couple Margaret R. MacLean, UK - Serotonin, endothelin, estrogen, microRNAs and pulmonary hyperten Neil Marrion, UK - Calcium - activated potassium channels, neuronal excitability Fiona Marshall, UK - GPCR molecular pharmacology, structure and drug discovery Alistair Mathie, UK - Ion channel structure, function and regulation, pain and the nervous system Ian McGrath, UK - Adrenoceptors; autonomic transmission; vascular pharmacology Graeme Milligan, UK - Structure, function and regulation of G protein - coupled receptors Richard Neubig, USA (Past Core Member)- G protein signaling; academic drug discovery Stefan Offermanns, Germany - G protein - coupled receptors, vascular / metabolic signaling Richard Olsen, USA - Structure and function of GABA - A receptors; mode of action of GABAergic drugs including general anesthetics and ethanol Jean - Philippe Pin, France (Past Core Member)- GPCR - mGLuR - GABAB - structure function relationship - pharmacology - biophysics Helgi Schiöth, Sweden David Searls, USA - Bioinformatics Graeme Semple, USA - GPCR Medicinal Chemistry Patrick M. Sexton, Australia - G protein - coupled receptors Roland Staal, USA - Microglia and neuroinflammation in neuropathic pain and neurological disorders Bart Staels, France - Nuclear receptor signaling in metabolic and cardiovascular diseases Katerina Tiligada, Greece - Immunopharmacology, histamine, histamine receptors, hypersensitivity, drug allergy, inflammation Georg Terstappen, Germany - Drug discovery for neurodegenerative diseases with a focus on AD Mary Vore, USA - Activity and regulation of expression and function of the ATP - binding cassette (ABC) transporters
a b c d e f g h i j k l m n o p q r s t u v w x y z