Sentences with phrase «for human endothelial cells»

The researchers used the power of gene sequencing and clever computational methods to uncover the «source code» for human endothelial cells and learn how that code is disturbed in human disease.

Not exact matches

So Daniel Anderson at the Massachusetts Institute of Technology exposed human bone marrow stem cells to biodegradable nanoparticles carrying the human gene for vascular endothelial growth factor (VEGF), which attracts blood vessels to injury sites.
In a previous related study published in the Journal of Materials Science: Materials in Medicine, the same team of NTU scientists found that fish scale - derived collagen would induce human umbilical vein endothelial cells to express 2.5 times more of a specific type of collagen responsible for blood vessel formation, as compared to endothelial cells cultured on bovine collagen.
Professor Takao Hamakubo's group at the Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), have shown that PTX3 forms strong bonds with histones and partially unfolds, leading to a disordered coaggregation of histone and PTX3 and protecting human endothelial cells from damage.
In an effort to overcome these limitations, a team at the Wyss Institute for Biologically Inspired Engineering led by its Founding Director, Donald Ingber, M.D., Ph.D., had previously engineered a microfluidic «Organ - on - a-Chip» (Organ Chip) culture device in which cells from a human intestinal cell line originally isolated from a tumor were cultured in one of two parallel running channels, separated by a porous matrix - coated membrane from human blood vessel - derived endothelial cells in the adjacent channel.
Related to this, the discovery of an increased endothelial cell population in the periphery of the human cornea has prompted an investigation for evidence of the existence of stem - like cells in the endothelial periphery.
Figure 2 shows sets of results for four areas of human corneal endothelial tissue; central endothelium (defined by endothelial cells within a 4 mm trephined boundary), central - intermediate endothelium (defined by endothelial cells within an 8 mm trephined boundary), intermediate - peripheral endothelium (defined by endothelial cells between the 4 mm trephine edge and 12 mm from the center of the corneal endothelium), and the peripheral endothelium (defined by the 8 mm trephined edge and 12 mm from the center of the corneal endothelium).
The impaired ability of human corneal endothelial cells (HCECs) to divide, both in vivo and in culture, has been well documented in the scientific literature for a number of years [1 - 6].
Researchers from the laboratories of Hiroshi Y. Yoshikawa and Hideki Taniguchi had previously demonstrated the in vitro formation of a 3D transplantable liver «organ bud» from human induced pluripotent stem cells (iPSCs) co-cultured with mesenchymal and endothelial progenitors, and allows for the growth of a small vascularized and functional organ [1 - 3].
A team at the Harvard John A. Paulson School for Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering at Harvard University has invented a method for 3D bioprinting thick vascularized tissue constructs composed of human stem cells, extracellular matrix, and circulatory channels lined with endothelial blood vessel cells.
A team led by Young - sup Yoon, MD, PhD developed a new method for generating endothelial cells, which make up the lining of blood vessels, from human induced pluripotent stem cells..
Susan Amara, USA - «Regulation of transporter function and trafficking by amphetamines, Structure - function relationships in excitatory amino acid transporters (EAATs), Modulation of dopamine transporters (DAT) by GPCRs, Genetics and functional analyses of human trace amine receptors» Tom I. Bonner, USA (Past Core Member)- Genomics, G protein coupled receptors Michel Bouvier, Canada - Molecular Pharmacology of G protein - Coupled Receptors; Molecular mechanisms controlling the selectivity and efficacy of GPCR signalling Thomas Burris, USA - Nuclear Receptor Pharmacology and Drug Discovery William A. Catterall, USA (Past Core Member)- The Molecular Basis of Electrical Excitability Steven Charlton, UK - Molecular Pharmacology and Drug Discovery Moses Chao, USA - Mechanisms of Neurotophin Receptor Signaling Mark Coles, UK - Cellular differentiation, human embryonic stem cells, stromal cells, haematopoietic stem cells, organogenesis, lymphoid microenvironments, develomental immunology Steven L. Colletti, USA Graham L Collingridge, UK Philippe Delerive, France - Metabolic Research (diabetes, obesity, non-alcoholic fatty liver, cardio - vascular diseases, nuclear hormone receptor, GPCRs, kinases) Sir Colin T. Dollery, UK (Founder and Past Core Member) Richard M. Eglen, UK Stephen M. Foord, UK David Gloriam, Denmark - GPCRs, databases, computational drug design, orphan recetpors Gillian Gray, UK Debbie Hay, New Zealand - G protein - coupled receptors, peptide receptors, CGRP, Amylin, Adrenomedullin, Migraine, Diabetes / obesity Allyn C. Howlett, USA Franz Hofmann, Germany - Voltage dependent calcium channels and the positive inotropic effect of beta adrenergic stimulation; cardiovascular function of cGMP protein kinase Yu Huang, Hong Kong - Endothelial and Metabolic Dysfunction, and Novel Biomarkers in Diabetes, Hypertension, Dyslipidemia and Estrogen Deficiency, Endothelium - derived Contracting Factors in the Regulation of Vascular Tone, Adipose Tissue Regulation of Vascular Function in Obesity, Diabetes and Hypertension, Pharmacological Characterization of New Anti-diabetic and Anti-hypertensive Drugs, Hypotensive and antioxidant Actions of Biologically Active Components of Traditional Chinese Herbs and Natural Plants including Polypehnols and Ginsenosides Adriaan P. IJzerman, The Netherlands - G protein - coupled receptors; allosteric modulation; binding kinetics Michael F Jarvis, USA - Purines and Purinergic Receptors and Voltage-gated ion channel (sodium and calcium) pharmacology Pain mechanisms Research Reproducibility Bong - Kiun Kaang, Korea - G protein - coupled receptors; Glutamate receptors; Neuropsychiatric disorders Eamonn Kelly, Prof, UK - Molecular Pharmacology of G protein - coupled receptors, in particular opioid receptors, regulation of GPCRs by kinasis and arrestins Terry Kenakin, USA - Drug receptor pharmacodynamics, receptor theory Janos Kiss, Hungary - Neurodegenerative disorders, Alzheimer's disease Stefan Knapp, Germany - Rational design of highly selective inhibitors (so call chemical probes) targeting protein kinases as well as protein interaction inhibitors of the bromodomain family Andrew Knight, UK Chris Langmead, Australia - Drug discovery, GPCRs, neuroscience and analytical pharmacology Vincent Laudet, France (Past Core Member)- Evolution of the Nuclear Receptor / Ligand couple Margaret R. MacLean, UK - Serotonin, endothelin, estrogen, microRNAs and pulmonary hyperten Neil Marrion, UK - Calcium - activated potassium channels, neuronal excitability Fiona Marshall, UK - GPCR molecular pharmacology, structure and drug discovery Alistair Mathie, UK - Ion channel structure, function and regulation, pain and the nervous system Ian McGrath, UK - Adrenoceptors; autonomic transmission; vascular pharmacology Graeme Milligan, UK - Structure, function and regulation of G protein - coupled receptors Richard Neubig, USA (Past Core Member)- G protein signaling; academic drug discovery Stefan Offermanns, Germany - G protein - coupled receptors, vascular / metabolic signaling Richard Olsen, USA - Structure and function of GABA - A receptors; mode of action of GABAergic drugs including general anesthetics and ethanol Jean - Philippe Pin, France (Past Core Member)- GPCR - mGLuR - GABAB - structure function relationship - pharmacology - biophysics Helgi Schiöth, Sweden David Searls, USA - Bioinformatics Graeme Semple, USA - GPCR Medicinal Chemistry Patrick M. Sexton, Australia - G protein - coupled receptors Roland Staal, USA - Microglia and neuroinflammation in neuropathic pain and neurological disorders Bart Staels, France - Nuclear receptor signaling in metabolic and cardiovascular diseases Katerina Tiligada, Greece - Immunopharmacology, histamine, histamine receptors, hypersensitivity, drug allergy, inflammation Georg Terstappen, Germany - Drug discovery for neurodegenerative diseases with a focus on AD Mary Vore, USA - Activity and regulation of expression and function of the ATP - binding cassette (ABC) transporters
This effect on cell survival was not endothelial cell - specific, since IC50 values for kahweol treatment of several human tumoral cell lines were similar to those obtained for HUVEC (results not shown).
Three recent experimental studies focused on low consumption / exposure.949596 In one study, 29 smokers each consumed a single cigarette, immediately after which they had a significant decrease in blood vessel output power and significant increase in blood vessel ageing level and remaining blood volume 25 minutes later, as markers of atherosclerosis.94 In another study, human coronary artery endothelial cells were exposed to the smoke equivalent to one cigarette, which led to activation of oxidant stress sensing transcription factor NFR2 and up - regulation of cytochrome p450, considered to have a role in the development of heart disease.95 These effects were not seen when heart cells were exposed to the vapour from one e - cigarette.95 A study exposed adult mice to low intensity tobacco smoke (two cigarettes) for one to two months and found adverse histopathological effects on brain cells.96
The researchers used human umbilical vein endothelial cells and human microvascular endothelial cells for the study.
Direct conversion or reprogramming of human postnatal cells into endothelial cells (ECs), bypassing stem or progenitor cell status, is crucial for regenerative medicine, cell therapy, and pathophysiological investigation but has remained largely unexplored.
However, p53 expression has previously been detected in the cytoplasm of normal human corneal endothelial cells [13], and these cells have a limited potential for cell division.
This data should be useful for determining the growth potential and characteristics of human corneal endothelial cells in the development of artificial corneas.
There have, however, been some studies with encouraging results; for example, Chinese scientists took human endothelial progenitor cells exposed to resveratrol, and showed that telomerase activity increased.
a b c d e f g h i j k l m n o p q r s t u v w x y z