Sentences with phrase «force field of energy»

Be a force field of energy.

Not exact matches

Moreover, by emphasizing the notion that personality was the sum total of its constitutive relationships and was subject to the interpersonal forces at work in a given field of energy, Sullivan was expressing in psychological terms the more complicated notions entailed in Whitehead's discussion of the extensive continuum.6
Gravity from space (Einstein's relativity) operates on mass through space and matter interaction is a natural process like centrifugal force which made its appearance when a body is morning in circle Jean mass is the amount of matter that must be present before gravity becomes effective or felt, once this minimum amount of matter is reached or exceeded, gravity with mass interact with space - time to bring geodesics and gravity begin to control other bodies and then orbit around each other, another aspect of the twin effect of gravity and mass is the necessity to account for energy required to sustain gravitating mass and where does this energy originating from Einstein's field equation says from space but never refer to the origin of gravitation.
Since the start of the team's most recent INCITE project, Alexeev is also helping them validate a force field (the sets of parameters needed to accurately calculate the energy functions) for peptide design against quantum mechanical simulations.
The standard model says that the fields of all fundamental forces should merge at extremely high energies, meaning there is also a unified, high - energy field out there.
In their paper, «Higgs Seesaw Mechanism as a Source for Dark Energy,» Krauss and Dent explore how a possible small coupling between the Higgs particle, and possible new particles likely to be associated with what is conventionally called the Grand Unified Scale — a scale perhaps 16 orders of magnitude smaller than the size of a proton, at which the three known non-gravitational forces in nature might converge into a single theory — could result in the existence of another background field in nature in addition to the Higgs field, which would contribute an energy density to empty space of precisely the correct scale to correspond to the observed energy deEnergy,» Krauss and Dent explore how a possible small coupling between the Higgs particle, and possible new particles likely to be associated with what is conventionally called the Grand Unified Scale — a scale perhaps 16 orders of magnitude smaller than the size of a proton, at which the three known non-gravitational forces in nature might converge into a single theory — could result in the existence of another background field in nature in addition to the Higgs field, which would contribute an energy density to empty space of precisely the correct scale to correspond to the observed energy deenergy density to empty space of precisely the correct scale to correspond to the observed energy deenergy density.
«The electron does naturally oscillate in the field of the laser, but if the laser intensity changes these oscillations also change, and this forces the electron to constantly change its energy level and thus its state, even leaving the atom.
DARK energy, the mysterious force thought to be responsible for the fact the universe's expansion is accelerating, might come from a series of exotic fields.
But once you've done that, it is easy to simply say that the lightsaber consists of some kind of concentrated energy stored in a force field.
This model describes three types of forces: electromagnetic interactions, which cause all phenomena associated with electric and magnetic fields and the spectrum of electromagnetic radiation; strong interactions, which bind atomic nuclei; and the weak nuclear force, which governs beta decay — a form of natural radioactivity — and hydrogen fusion, the source of the sun's energy.
Offering a field of view 100 times larger than that of the iconic Hubble Space Telescope, WFIRST is meant to study dark energy — the mysterious force driving the universe's accelerating expansion — as well as large numbers of planets orbiting other stars, among many other scientific objectives.
The Force is described to Luke in the original Star Wars as the source of a Jedi knight's powers, «an energy field created by all living things» that binds us and the galaxy together, and derided by an Imperial officer as «sorcerer's way» and an «ancient religion.»
g (acceleration due to gravity) G (gravitational constant) G star G1.9 +0.3 gabbro Gabor, Dennis (1900 — 1979) Gabriel's Horn Gacrux (Gamma Crucis) gadolinium Gagarin, Yuri Alexeyevich (1934 — 1968) Gagarin Cosmonaut Training Center GAIA Gaia Hypothesis galactic anticenter galactic bulge galactic center Galactic Club galactic coordinates galactic disk galactic empire galactic equator galactic habitable zone galactic halo galactic magnetic field galactic noise galactic plane galactic rotation galactose Galatea GALAXIES galaxy galaxy cannibalism galaxy classification galaxy formation galaxy interaction galaxy merger Galaxy, The Galaxy satellite series Gale Crater Galen (c. AD 129 — c. 216) galena GALEX (Galaxy Evolution Explorer) Galilean satellites Galilean telescope Galileo (Galilei, Galileo)(1564 — 1642) Galileo (spacecraft) Galileo Europa Mission (GEM) Galileo satellite navigation system gall gall bladder Galle, Johann Gottfried (1812 — 1910) gallic acid gallium gallon gallstone Galois, Évariste (1811 — 1832) Galois theory Galton, Francis (1822 — 1911) Galvani, Luigi (1737 — 1798) galvanizing galvanometer game game theory GAMES AND PUZZLES gamete gametophyte Gamma (Soviet orbiting telescope) Gamma Cassiopeiae Gamma Cassiopeiae star gamma function gamma globulin gamma rays Gamma Velorum gamma - ray burst gamma - ray satellites Gamow, George (1904 — 1968) ganglion gangrene Ganswindt, Hermann (1856 — 1934) Ganymede «garbage theory», of the origin of life Gardner, Martin (1914 — 2010) Garneau, Marc (1949 ---RRB- garnet Garnet Star (Mu Cephei) Garnet Star Nebula (IC 1396) garnierite Garriott, Owen K. (1930 ---RRB- Garuda gas gas chromatography gas constant gas giant gas laws gas - bounded nebula gaseous nebula gaseous propellant gaseous - propellant rocket engine gasoline Gaspra (minor planet 951) Gassendi, Pierre (1592 — 1655) gastric juice gastrin gastrocnemius gastroenteritis gastrointestinal tract gastropod gastrulation Gatewood, George D. (1940 ---RRB- Gauer - Henry reflex gauge boson gauge theory gauss (unit) Gauss, Carl Friedrich (1777 — 1855) Gaussian distribution Gay - Lussac, Joseph Louis (1778 — 1850) GCOM (Global Change Observing Mission) Geber (c. 720 — 815) gegenschein Geiger, Hans Wilhelm (1882 — 1945) Geiger - Müller counter Giessler tube gel gelatin Gelfond's theorem Gell - Mann, Murray (1929 ---RRB- GEM «gemination,» of martian canals Geminga Gemini (constellation) Gemini Observatory Gemini Project Gemini - Titan II gemstone gene gene expression gene mapping gene pool gene therapy gene transfer General Catalogue of Variable Stars (GCVS) general precession general theory of relativity generation ship generator Genesis (inflatable orbiting module) Genesis (sample return probe) genetic code genetic counseling genetic disorder genetic drift genetic engineering genetic marker genetic material genetic pool genetic recombination genetics GENETICS AND HEREDITY Geneva Extrasolar Planet Search Program genome genome, interstellar transmission of genotype gentian violet genus geoboard geode geodesic geodesy geodesy satellites geodetic precession Geographos (minor planet 1620) geography GEOGRAPHY Geo - IK geologic time geology GEOLOGY AND PLANETARY SCIENCE geomagnetic field geomagnetic storm geometric mean geometric sequence geometry GEOMETRY geometry puzzles geophysics GEOS (Geodetic Earth Orbiting Satellite) Geosat geostationary orbit geosynchronous orbit geosynchronous / geostationary transfer orbit (GTO) geosyncline Geotail (satellite) geotropism germ germ cells Germain, Sophie (1776 — 1831) German Rocket Society germanium germination Gesner, Konrad von (1516 — 1565) gestation Get Off the Earth puzzle Gettier problem geyser g - force GFO (Geosat Follow - On) GFZ - 1 (GeoForschungsZentrum) ghost crater Ghost Head Nebula (NGC 2080) ghost image Ghost of Jupiter (NGC 3242) Giacconi, Riccardo (1931 ---RRB- Giacobini - Zinner, Comet (Comet 21P /) Giaever, Ivar (1929 ---RRB- giant branch Giant Magellan Telescope giant molecular cloud giant planet giant star Giant's Causeway Giauque, William Francis (1895 — 1982) gibberellins Gibbs, Josiah Willard (1839 — 1903) Gibbs free energy Gibson, Edward G. (1936 ---RRB- Gilbert, William (1544 — 1603) gilbert (unit) Gilbreath's conjecture gilding gill gill (unit) Gilruth, Robert R. (1913 — 2000) gilsonite gimbal Ginga ginkgo Giotto (ESA Halley probe) GIRD (Gruppa Isutcheniya Reaktivnovo Dvisheniya) girder glacial drift glacial groove glacier gland Glaser, Donald Arthur (1926 — 2013) Glashow, Sheldon (1932 ---RRB- glass GLAST (Gamma - ray Large Area Space Telescope) Glauber, Johann Rudolf (1607 — 1670) glaucoma glauconite Glenn, John Herschel, Jr. (1921 ---RRB- Glenn Research Center Glennan, T (homas) Keith (1905 — 1995) glenoid cavity glia glial cell glider Gliese 229B Gliese 581 Gliese 67 (HD 10307, HIP 7918) Gliese 710 (HD 168442, HIP 89825) Gliese 86 Gliese 876 Gliese Catalogue glioma glissette glitch Global Astrometric Interferometer for Astrophysics (GAIA) Global Oscillation Network Group (GONG) Globalstar globe Globigerina globular cluster globular proteins globule globulin globus pallidus GLOMR (Global Low Orbiting Message Relay) GLONASS (Global Navigation Satellite System) glossopharyngeal nerve Gloster E. 28/39 glottis glow - worm glucagon glucocorticoid glucose glucoside gluon Glushko, Valentin Petrovitch (1908 — 1989) glutamic acid glutamine gluten gluteus maximus glycerol glycine glycogen glycol glycolysis glycoprotein glycosidic bond glycosuria glyoxysome GMS (Geosynchronous Meteorological Satellite) GMT (Greenwich Mean Time) Gnathostomata gneiss Go Go, No - go goblet cell GOCE (Gravity field and steady - state Ocean Circulation Explorer) God Goddard, Robert Hutchings (1882 — 1945) Goddard Institute for Space Studies Goddard Space Flight Center Gödel, Kurt (1906 — 1978) Gödel universe Godwin, Francis (1562 — 1633) GOES (Geostationary Operational Environmental Satellite) goethite goiter gold Gold, Thomas (1920 — 2004) Goldbach conjecture golden ratio (phi) Goldin, Daniel Saul (1940 ---RRB- gold - leaf electroscope Goldstone Tracking Facility Golgi, Camillo (1844 — 1926) Golgi apparatus Golomb, Solomon W. (1932 — 2016) golygon GOMS (Geostationary Operational Meteorological Satellite) gonad gonadotrophin - releasing hormone gonadotrophins Gondwanaland Gonets goniatite goniometer gonorrhea Goodricke, John (1764 — 1786) googol Gordian Knot Gordon, Richard Francis, Jr. (1929 — 2017) Gore, John Ellard (1845 — 1910) gorge gorilla Gorizont Gott loop Goudsmit, Samuel Abraham (1902 — 1978) Gould, Benjamin Apthorp (1824 — 1896) Gould, Stephen Jay (1941 — 2002) Gould Belt gout governor GPS (Global Positioning System) Graaf, Regnier de (1641 — 1673) Graafian follicle GRAB graben GRACE (Gravity Recovery and Climate Experiment) graceful graph gradient Graham, Ronald (1935 ---RRB- Graham, Thomas (1805 — 1869) Graham's law of diffusion Graham's number GRAIL (Gravity Recovery and Interior Laboratory) grain (cereal) grain (unit) gram gram - atom Gramme, Zénobe Théophile (1826 — 1901) gramophone Gram's stain Gran Telescopio Canarias (GTC) Granat Grand Tour grand unified theory (GUT) Grandfather Paradox Granit, Ragnar Arthur (1900 — 1991) granite granulation granule granulocyte graph graph theory graphene graphite GRAPHS AND GRAPH THEORY graptolite grass grassland gravel graveyard orbit gravimeter gravimetric analysis Gravitational Biology Facility gravitational collapse gravitational constant (G) gravitational instability gravitational lens gravitational life gravitational lock gravitational microlensing GRAVITATIONAL PHYSICS gravitational slingshot effect gravitational waves graviton gravity gravity gradient gravity gradient stabilization Gravity Probe A Gravity Probe B gravity - assist gray (Gy) gray goo gray matter grazing - incidence telescope Great Annihilator Great Attractor great circle Great Comets Great Hercules Cluster (M13, NGC 6205) Great Monad Great Observatories Great Red Spot Great Rift (in Milky Way) Great Rift Valley Great Square of Pegasus Great Wall greater omentum greatest elongation Green, George (1793 — 1841) Green, Nathaniel E. Green, Thomas Hill (1836 — 1882) green algae Green Bank Green Bank conference (1961) Green Bank Telescope green flash greenhouse effect greenhouse gases Green's theorem Greg, Percy (1836 — 1889) Gregorian calendar Grelling's paradox Griffith, George (1857 — 1906) Griffith Observatory Grignard, François Auguste Victor (1871 — 1935) Grignard reagent grike Grimaldi, Francesco Maria (1618 — 1663) Grissom, Virgil (1926 — 1967) grit gritstone Groom Lake Groombridge 34 Groombridge Catalogue gross ground, electrical ground state ground - track group group theory GROUPS AND GROUP THEORY growing season growth growth hormone growth hormone - releasing hormone growth plate Grudge, Project Gruithuisen, Franz von Paula (1774 — 1852) Grus (constellation) Grus Quartet (NGC 7552, NGC 7582, NGC 7590, and NGC 7599) GSLV (Geosynchronous Satellite Launch Vehicle) g - suit G - type asteroid Guericke, Otto von (1602 — 1686) guanine Guiana Space Centre guidance, inertial Guide Star Catalog (GSC) guided missile guided missiles, postwar development Guillaume, Charles Édouard (1861 — 1938) Gulf Stream (ocean current) Gulfstream (jet plane) Gullstrand, Allvar (1862 — 1930) gum Gum Nebula gun metal gunpowder Gurwin Gusev Crater gut Gutenberg, Johann (c. 1400 — 1468) Guy, Richard Kenneth (1916 ---RRB- guyot Guzman Prize gymnosperm gynecology gynoecium gypsum gyrocompass gyrofrequency gyropilot gyroscope gyrostabilizer Gyulbudagian's Nebula (HH215)
The protein was subjected to an energy minimization using the AMBER99SB force field by 1000 - step steepest - descent minimization followed by 100 - conjugate gradient minimization using University of California, San Francisco CHIMERA version 1.9 software (University of California, San Francisco, CA)(Pettersen et al., 2004).
Indeed, sometime after the tenuous gas of the Solar nebula began collapsing into the proto - Sun within its host molecular cloud, a strong magnetic field developed that was instrumental in transporting rotational energy away from its core region in bi-polar jets of gas so that centrifugal forces created by the nebula's collapse did not grow so much as to halt continuing gravitational contraction.
In place of anything of possible interest for fans of the film, find a pathetic thirty - minute featurette interviewing real - life paranormal researchers (and, briefly, fourth - Ghostbuster prototype Richard Lawson) as they wax profound about energy and life forces and EM fields with the detail and information of Yoda.
The electrical energy between Alice and Lucy crackles with kinetic menace, as Mangan turn the mood and the setting of the story into a kind of composite force field that sucks the reader in almost instantly, like a wave of humid air blanketing you after emerging from an air - cooled room.
That's partially because of the electrical energy that crackles between Alice and Lucy, but it's also related to Mangan's ability to turn the mood and the setting of the story into a kind of composite force field that sucks the reader in almost instantly.
The 12 rusted brown and varnished steel sculptures on display in the grounds of the New Art Centre at Roche Court near Salisbury are something different: a kind of time capsule; a little force field of archived energy.
In my view (and I've seen energy and environment close up in every election since Pres. Nixon's rather revolutionary Environmental Message of the early 1970s == too bad there was that third rate break in to spoil his record) the tests for all the candidates will be whether they will substiture oil taxes for off - oil subsidies, carbon taxes to level the whole field, and then and only then decide where we need to push or pull a bit (like with the fuel economy standards, long over due, and boy will they take a long time to arrive in full force.)
Many of science does not include the difference in the circumference of the equator to the poles, circular motion and the deflection of solar energy off a moving object, the energy difference of compression which has a huge impact to the atmosphere and under the planet's surface (centrifugal force), the possibility of two magnetic fields, the force of the sun's magnetic field in the sequence to the planets circular motion (bugs on the windshield effect), etc. etc. etc..
Parker's transport equation can be reduced, under some simplifying yet realistic assumptions, to the so - called force field approximation (Gleeson & Axford 1968; Caballero - Lopez & Moraal 2004), where the modulation is described by a single parameter, the modulation potential, ϕ, which parametrises the shape of the GCR energy spectrum (see formalism in Usoskin et al. 2005) and is expected to be inversely proportional to the diffusion coefficient, κ, of the heliospheric transport of GCRs, to some power n.
I again go back to the question of what force provides the extra thermal energy to mass in / falling into a gravity field.
Anyone disputing Jelbrings hypothesis needs to prove that gravity does not provide a minimum heat / energy level in matter when that matter is being held back from falling further through the gravity field by the electro - magnetic and strong forces of the atoms in the rocks at the surface of the planet.
If no new energy is being pumped into the base then the law of conservation of energy means that heat can not be conducted up in a gravity field and so the top will be colder than the base and remain so ie no force can be applied.
If we could get a free transfer of energy to altitude, it doesn't mean an isothermal outcome if conduction of temperature is influenced by the gravitational force field.
Now, Leif, the cause of the turbulent field or natural convection is the suitable flow of energy from the solar core against gravity towards the surface, and the laws of fluid dynamics under conditions in which the convective cell has rotational and orbital components of angular momentum as determined by the path of the sun the planets force it to follow.
In doing so the molecules components that are now vibrating disturb the electromagnetic balance of all the surrounding molecules electromagnetic fields which due to their state of equilibrium with the wider body of gas offer resistance but must acquiescent to the force of the field by propagating the energy though out medium.
a b c d e f g h i j k l m n o p q r s t u v w x y z