Sentences with phrase «global mean climate»

It is encouraging that the global mean climate sensitivity parameter for cases involving lower stratospheric O3 changes and that for CO2 changes (viz., doubling) are reasonably similar in Christiansen (1999) while being within about 25 % of a central value in Hansen et al. (1997a).
Modulation of ENSO by the PDO significantly modifies regional teleconnections around the Pacific Basin (Power et al., 1999b; Salinger et al., 2001), and affects the evolution of the global mean climate.
«The global mean climate responses to different forcings may differ because of the character of the forcings themselves (such as their geographical or vertical distribution) and because different forcings induce different patterns of surface warming or cooling, thereby affecting the net top - of - atmosphere radiation imbalance, and thus the ocean heat uptake rate.»
The figure at the end of this comment by Jim Hansen demonstrates that projections of global mean climate presented in a 1988 senate hearing (17 years ago) have actually been right on the money

Not exact matches

It found the rapid pace of global warming and the slow pace of coral growth meant the reef was unlikely to evolve quickly enough to survive the level of climate change predicted in the next few decades.
Moreover, looking «outside - in» means acknowledging that business does not operate in a vacuum, and that the private sector has a role to play in collaborating on the key global challenges of our time, from climate change to sustainable development.
The improving global situation should mean, during 2004, a more favourable climate for most types of exports.
And, of course, those commitments and associated domestic measures are just Canada's means to achieve the ends of contributing to reducing global greenhouse gas emissions to a level that avoids the dangerous climate change, the shared goal set out in the United Nations Framework Convention on Climate Change and reiterated in the Paris Agrclimate change, the shared goal set out in the United Nations Framework Convention on Climate Change and reiterated in the Paris AgrClimate Change and reiterated in the Paris Agreement.
AnViL, when you say «highly likely to have effected the global climate» — are you really meaning «affected» or what you wrote?
The global warming / climate change noise machine has reached a crescendo this week with Al Gore's trip to Oslo to pick up his Nobel Peace Prize, our colleges sponsoring» Focus the Nation» weeks to promote the self - evident moral truth of combating warming, and above all the U.N. - sponsored Bali conference meant to produce a treaty to succeed the soon - to - expire Kyoto.
Its sensitivity to climatic variables means that global climate change is likely to have profound impacts on coffee growing and production.
This sensitivity to climatic variables means that global climate change is likely to have profound impacts on coffee growing and production.
Snow has wreaked havoc over the past few days but what if it's just the start and the global warming, sorry, climate change means we're all facing months, years or decades in freezing conditions?
Studies of past climate indicate each 1 °C rise in the global mean temperature eventually leads to a 20 - metre rise in sea level
Even the most optimistic estimates of the effects of contemporary fossil fuel use suggest that mean global temperature will rise by a minimum of 2 °C before the end of this century and that CO2 emissions will affect climate for tens of thousands of years.
«We know that these large global mean changes are going to be associated with local and regional changes that are going to cause real problems in some areas,» says Andy Challinor, an expert on climate and agriculture at the University of Leeds in England.
Global climate change and the energy crisis mean that alternatives to fossil fuels are urgently needed.
So, how exactly, I mean everybody hears about global warming or climate change and rising levels of greenhouse gases — how are the two actually related?
In turn, sharing scientific and indigenous predictive capabilities is meant to improve coastal ice interpretation and prediction based on satellite imagery, assist communities refining public safety measures, and to add local sea ice to parameters used in assessing global climate change in the Arctic.
Climate models predict that as the world warms, heat in inner Asia will continue to rise substantially faster than the global mean.
It explores a number of different climate change futures — from a no - emissions - cuts case in which global mean temperatures rise by 4.5 °C, to a 2 °C rise, the upper limit for temperature in the Paris Agreement.
Stabilising at 550 ppm would mean ensuring global emissions peak no later than 2025, according to the Intergovernmental Panel on Climate Change.
If there was a 4.5 °C global mean temperature rise, the climates in these areas are projected to become unsuitable for many the plants and animals that currently live there meaning:
«Given the current climate — I mean, political situation — in Washington, I'm wondering whether highlighting [clean energy] is something we still want to do,» board member G. P. (Bud) Peterson asked today during the board's review of the next edition of Science & Engineering Indicators, a biennial compendium of global trends in science and technology.
What it means: Unlike the Kyoto Protocol — a 1997 climate pact that sought to force specific pollution reductions on certain countries, but failed to do virtually anything to slow global warming — the hoped - for Paris agreement would see nations taking voluntary steps to stem greenhouse gas pollution.
Sure, global warming is real, said participants in a recent climate change conference, but that doesn't mean we should do anything about it.
This new research takes away the lower end of climate sensitivity estimates, meaning that global average temperatures will increase by 3 °C to 5 °C with a doubling of carbon dioxide.»
In its recent Assessement Report (AR5), the Intergovernmental Panel on Climate Change (IPCC) projects that global mean temperature may rise up to 5 °C elsius by the end of this century.
«The scientific community is only beginning to understand what it would mean for global climate should this trend continue, as predicted by some climate models.»
An international group of atmospheric chemists and physicist could now have solved another piece in the climate puzzle by means of laboratory experiments and global model simulations.
«Leveraging a digital control mechanism means we can give value to the millions of observations collected by volunteers» and «it allows a new kind of science where citizens can directly contribute to the analysis of global challenges like climate change» say Hamed Mehdipoor and Dr. Raul Zurita - Milla, who work at the Geo - Information Processing department of ITC.
I don't care about consensus, but for what it's worth: 10 out of 17 means a 59 % consensus that climate sensitivity is likely to be 2C or lower and as such global warming is not dangerous according to UN politically agreed criteria.
It may be that many of the changes have limited predictability, which means that we should be prepared for a range of climate outcomes associated with global warming,» said Clement.
Even if we could determine a «safe» level of interference in the climate system, the sensitivity of global mean temperature to increasing atmospheric CO2 is known perhaps only to a factor of three or less.
«The global mean sea level is rising because of climate change, but the change depends on where you are in the world,» says Rüdiger Haas.
That means that a climate with a lot of CO2 warming partially offset in the global average by a lot of regional aerosol cooling is still a very different climate than one with no anthropogenic aerosols and less CO2.
g (acceleration due to gravity) G (gravitational constant) G star G1.9 +0.3 gabbro Gabor, Dennis (1900 — 1979) Gabriel's Horn Gacrux (Gamma Crucis) gadolinium Gagarin, Yuri Alexeyevich (1934 — 1968) Gagarin Cosmonaut Training Center GAIA Gaia Hypothesis galactic anticenter galactic bulge galactic center Galactic Club galactic coordinates galactic disk galactic empire galactic equator galactic habitable zone galactic halo galactic magnetic field galactic noise galactic plane galactic rotation galactose Galatea GALAXIES galaxy galaxy cannibalism galaxy classification galaxy formation galaxy interaction galaxy merger Galaxy, The Galaxy satellite series Gale Crater Galen (c. AD 129 — c. 216) galena GALEX (Galaxy Evolution Explorer) Galilean satellites Galilean telescope Galileo (Galilei, Galileo)(1564 — 1642) Galileo (spacecraft) Galileo Europa Mission (GEM) Galileo satellite navigation system gall gall bladder Galle, Johann Gottfried (1812 — 1910) gallic acid gallium gallon gallstone Galois, Évariste (1811 — 1832) Galois theory Galton, Francis (1822 — 1911) Galvani, Luigi (1737 — 1798) galvanizing galvanometer game game theory GAMES AND PUZZLES gamete gametophyte Gamma (Soviet orbiting telescope) Gamma Cassiopeiae Gamma Cassiopeiae star gamma function gamma globulin gamma rays Gamma Velorum gamma - ray burst gamma - ray satellites Gamow, George (1904 — 1968) ganglion gangrene Ganswindt, Hermann (1856 — 1934) Ganymede «garbage theory», of the origin of life Gardner, Martin (1914 — 2010) Garneau, Marc (1949 ---RRB- garnet Garnet Star (Mu Cephei) Garnet Star Nebula (IC 1396) garnierite Garriott, Owen K. (1930 ---RRB- Garuda gas gas chromatography gas constant gas giant gas laws gas - bounded nebula gaseous nebula gaseous propellant gaseous - propellant rocket engine gasoline Gaspra (minor planet 951) Gassendi, Pierre (1592 — 1655) gastric juice gastrin gastrocnemius gastroenteritis gastrointestinal tract gastropod gastrulation Gatewood, George D. (1940 ---RRB- Gauer - Henry reflex gauge boson gauge theory gauss (unit) Gauss, Carl Friedrich (1777 — 1855) Gaussian distribution Gay - Lussac, Joseph Louis (1778 — 1850) GCOM (Global Change Observing Mission) Geber (c. 720 — 815) gegenschein Geiger, Hans Wilhelm (1882 — 1945) Geiger - Müller counter Giessler tube gel gelatin Gelfond's theorem Gell - Mann, Murray (1929 ---RRB- GEM «gemination,» of martian canals Geminga Gemini (constellation) Gemini Observatory Gemini Project Gemini - Titan II gemstone gene gene expression gene mapping gene pool gene therapy gene transfer General Catalogue of Variable Stars (GCVS) general precession general theory of relativity generation ship generator Genesis (inflatable orbiting module) Genesis (sample return probe) genetic code genetic counseling genetic disorder genetic drift genetic engineering genetic marker genetic material genetic pool genetic recombination genetics GENETICS AND HEREDITY Geneva Extrasolar Planet Search Program genome genome, interstellar transmission of genotype gentian violet genus geoboard geode geodesic geodesy geodesy satellites geodetic precession Geographos (minor planet 1620) geography GEOGRAPHY Geo - IK geologic time geology GEOLOGY AND PLANETARY SCIENCE geomagnetic field geomagnetic storm geometric mean geometric sequence geometry GEOMETRY geometry puzzles geophysics GEOS (Geodetic Earth Orbiting Satellite) Geosat geostationary orbit geosynchronous orbit geosynchronous / geostationary transfer orbit (GTO) geosyncline Geotail (satellite) geotropism germ germ cells Germain, Sophie (1776 — 1831) German Rocket Society germanium germination Gesner, Konrad von (1516 — 1565) gestation Get Off the Earth puzzle Gettier problem geyser g - force GFO (Geosat Follow - On) GFZ - 1 (GeoForschungsZentrum) ghost crater Ghost Head Nebula (NGC 2080) ghost image Ghost of Jupiter (NGC 3242) Giacconi, Riccardo (1931 ---RRB- Giacobini - Zinner, Comet (Comet 21P /) Giaever, Ivar (1929 ---RRB- giant branch Giant Magellan Telescope giant molecular cloud giant planet giant star Giant's Causeway Giauque, William Francis (1895 — 1982) gibberellins Gibbs, Josiah Willard (1839 — 1903) Gibbs free energy Gibson, Edward G. (1936 ---RRB- Gilbert, William (1544 — 1603) gilbert (unit) Gilbreath's conjecture gilding gill gill (unit) Gilruth, Robert R. (1913 — 2000) gilsonite gimbal Ginga ginkgo Giotto (ESA Halley probe) GIRD (Gruppa Isutcheniya Reaktivnovo Dvisheniya) girder glacial drift glacial groove glacier gland Glaser, Donald Arthur (1926 — 2013) Glashow, Sheldon (1932 ---RRB- glass GLAST (Gamma - ray Large Area Space Telescope) Glauber, Johann Rudolf (1607 — 1670) glaucoma glauconite Glenn, John Herschel, Jr. (1921 ---RRB- Glenn Research Center Glennan, T (homas) Keith (1905 — 1995) glenoid cavity glia glial cell glider Gliese 229B Gliese 581 Gliese 67 (HD 10307, HIP 7918) Gliese 710 (HD 168442, HIP 89825) Gliese 86 Gliese 876 Gliese Catalogue glioma glissette glitch Global Astrometric Interferometer for Astrophysics (GAIA) Global Oscillation Network Group (GONG) Globalstar globe Globigerina globular cluster globular proteins globule globulin globus pallidus GLOMR (Global Low Orbiting Message Relay) GLONASS (Global Navigation Satellite System) glossopharyngeal nerve Gloster E. 28/39 glottis glow - worm glucagon glucocorticoid glucose glucoside gluon Glushko, Valentin Petrovitch (1908 — 1989) glutamic acid glutamine gluten gluteus maximus glycerol glycine glycogen glycol glycolysis glycoprotein glycosidic bond glycosuria glyoxysome GMS (Geosynchronous Meteorological Satellite) GMT (Greenwich Mean Time) Gnathostomata gneiss Go Go, No - go goblet cell GOCE (Gravity field and steady - state Ocean Circulation Explorer) God Goddard, Robert Hutchings (1882 — 1945) Goddard Institute for Space Studies Goddard Space Flight Center Gödel, Kurt (1906 — 1978) Gödel universe Godwin, Francis (1562 — 1633) GOES (Geostationary Operational Environmental Satellite) goethite goiter gold Gold, Thomas (1920 — 2004) Goldbach conjecture golden ratio (phi) Goldin, Daniel Saul (1940 ---RRB- gold - leaf electroscope Goldstone Tracking Facility Golgi, Camillo (1844 — 1926) Golgi apparatus Golomb, Solomon W. (1932 — 2016) golygon GOMS (Geostationary Operational Meteorological Satellite) gonad gonadotrophin - releasing hormone gonadotrophins Gondwanaland Gonets goniatite goniometer gonorrhea Goodricke, John (1764 — 1786) googol Gordian Knot Gordon, Richard Francis, Jr. (1929 — 2017) Gore, John Ellard (1845 — 1910) gorge gorilla Gorizont Gott loop Goudsmit, Samuel Abraham (1902 — 1978) Gould, Benjamin Apthorp (1824 — 1896) Gould, Stephen Jay (1941 — 2002) Gould Belt gout governor GPS (Global Positioning System) Graaf, Regnier de (1641 — 1673) Graafian follicle GRAB graben GRACE (Gravity Recovery and Climate Experiment) graceful graph gradient Graham, Ronald (1935 ---RRB- Graham, Thomas (1805 — 1869) Graham's law of diffusion Graham's number GRAIL (Gravity Recovery and Interior Laboratory) grain (cereal) grain (unit) gram gram - atom Gramme, Zénobe Théophile (1826 — 1901) gramophone Gram's stain Gran Telescopio Canarias (GTC) Granat Grand Tour grand unified theory (GUT) Grandfather Paradox Granit, Ragnar Arthur (1900 — 1991) granite granulation granule granulocyte graph graph theory graphene graphite GRAPHS AND GRAPH THEORY graptolite grass grassland gravel graveyard orbit gravimeter gravimetric analysis Gravitational Biology Facility gravitational collapse gravitational constant (G) gravitational instability gravitational lens gravitational life gravitational lock gravitational microlensing GRAVITATIONAL PHYSICS gravitational slingshot effect gravitational waves graviton gravity gravity gradient gravity gradient stabilization Gravity Probe A Gravity Probe B gravity - assist gray (Gy) gray goo gray matter grazing - incidence telescope Great Annihilator Great Attractor great circle Great Comets Great Hercules Cluster (M13, NGC 6205) Great Monad Great Observatories Great Red Spot Great Rift (in Milky Way) Great Rift Valley Great Square of Pegasus Great Wall greater omentum greatest elongation Green, George (1793 — 1841) Green, Nathaniel E. Green, Thomas Hill (1836 — 1882) green algae Green Bank Green Bank conference (1961) Green Bank Telescope green flash greenhouse effect greenhouse gases Green's theorem Greg, Percy (1836 — 1889) Gregorian calendar Grelling's paradox Griffith, George (1857 — 1906) Griffith Observatory Grignard, François Auguste Victor (1871 — 1935) Grignard reagent grike Grimaldi, Francesco Maria (1618 — 1663) Grissom, Virgil (1926 — 1967) grit gritstone Groom Lake Groombridge 34 Groombridge Catalogue gross ground, electrical ground state ground - track group group theory GROUPS AND GROUP THEORY growing season growth growth hormone growth hormone - releasing hormone growth plate Grudge, Project Gruithuisen, Franz von Paula (1774 — 1852) Grus (constellation) Grus Quartet (NGC 7552, NGC 7582, NGC 7590, and NGC 7599) GSLV (Geosynchronous Satellite Launch Vehicle) g - suit G - type asteroid Guericke, Otto von (1602 — 1686) guanine Guiana Space Centre guidance, inertial Guide Star Catalog (GSC) guided missile guided missiles, postwar development Guillaume, Charles Édouard (1861 — 1938) Gulf Stream (ocean current) Gulfstream (jet plane) Gullstrand, Allvar (1862 — 1930) gum Gum Nebula gun metal gunpowder Gurwin Gusev Crater gut Gutenberg, Johann (c. 1400 — 1468) Guy, Richard Kenneth (1916 ---RRB- guyot Guzman Prize gymnosperm gynecology gynoecium gypsum gyrocompass gyrofrequency gyropilot gyroscope gyrostabilizer Gyulbudagian's Nebula (HH215)
The climate sensitivity classically defined is the response of global mean temperature to a forcing once all the «fast feedbacks» have occurred (atmospheric temperatures, clouds, water vapour, winds, snow, sea ice etc.), but before any of the «slow» feedbacks have kicked in (ice sheets, vegetation, carbon cycle etc.).
To reach further back in time and provide a long - term record that can inform global climate models, scientists are turning to other means of measuring ice mass.
When I said most have not done the work, I meant that very few have actually done a thorough study of Global Climate.
The displacement of the platform is analogous to global mean temperature, and the stiffness of the spring is analogous to climate sensitivity.
One common measure of climate sensitivity is the amount by which global mean surface temperature would change once the system has settled into a new equilibrium following a doubling of the pre-industrial CO2 concentration.
The team increased one forcing agent (see sidebar) in a climate model, for example carbon dioxide, and decreased another, say methane, so that global mean temperature didn't change.
The global mean temperature rise of less than 1 degree C in the past century does not seem like much, but it is associated with a winter temperature rise of 3 to 4 degrees C over most of the Arctic in the past 20 years, unprecedented loss of ice from all the tropical glaciers, a decrease of 15 to 20 % in late summer sea ice extent, rising sealevel, and a host of other measured signs of anomalous and rapid climate change.
Using thus 10 different climate models and over 10,000 simulations for the weather@home experiments alone, they find that breaking the previous record for maximum mean October temperatures in Australia is at least six times more likely due to global warming.
[T] he idea that the sun is currently driving climate change is strongly rejected by the world's leading authority on climate science, the U.N.'s Intergovernmental Panel on Climate Change, which found in its latest (2013) report that «There is high confidence that changes in total solar irradiance have not contributed to the increase in global mean surface temperature over the period 1986 to 2008, based on direct satellite measurements of total solar irradiance.climate change is strongly rejected by the world's leading authority on climate science, the U.N.'s Intergovernmental Panel on Climate Change, which found in its latest (2013) report that «There is high confidence that changes in total solar irradiance have not contributed to the increase in global mean surface temperature over the period 1986 to 2008, based on direct satellite measurements of total solar irradiance.climate science, the U.N.'s Intergovernmental Panel on Climate Change, which found in its latest (2013) report that «There is high confidence that changes in total solar irradiance have not contributed to the increase in global mean surface temperature over the period 1986 to 2008, based on direct satellite measurements of total solar irradiance.Climate Change, which found in its latest (2013) report that «There is high confidence that changes in total solar irradiance have not contributed to the increase in global mean surface temperature over the period 1986 to 2008, based on direct satellite measurements of total solar irradiance.»
Today we understand the impact of human activities on global mean temperature very well; however, high - impact extreme weather events are where the socio - economic impacts of a changing climate manifest itself and where our understanding is more in its infancy but nevertheless developing at pace.
(Top left) Global annual mean radiative influences (W m — 2) of LGM climate change agents, generally feedbacks in glacial - interglacial cycles, but also specified in most Atmosphere - Ocean General Circulation Model (AOGCM) simulations for the LGM.
Because climate systems are complex, increases in global average temperatures do not mean increased temperatures everywhere on Earth, nor that temperatures in a given year will be warmer than the year before (which represents weather, not climate).
Moreover, for temperatures similar to the present global mean, water vapor feedback actually cancels out some of the positive curvature from the fourth - power law (see Chapter 4 of my book, Principles of Planetary Climate).
a b c d e f g h i j k l m n o p q r s t u v w x y z