Sentences with phrase «greenhouse effect of clouds»

http://www.indiaenvironmentportal.org.in/files/file/cloud%20radiative%20forcing.pdf «The greenhouse effect of clouds may be larger than that resulting from a hundredfold increase in the CO2 concentration of the atmosphere.»
Greenhouse gas clouds lower the Albedo of the Earth resulting in a lower effective emission temperature — you shouldn't count the greenhouse effect of clouds and then not count the solar reflecting impact of the same clouds.

Not exact matches

Scientists can measure how much energy greenhouse gases now add (roughly three watts per square meter), but what eludes precise definition is how much other factors — the response of clouds to warming, the cooling role of aerosols, the heat and gas absorbed by oceans, human transformation of the landscape, even the natural variability of solar strength — diminish or strengthen that effect.
It may seem surprising to people, but you can look at something like Mars, which has a very thin atmosphere, and you can look at something like Venus which we tend to think of as sort of having this rather heavy, clouded atmosphere, which [is] hellishly warm because of runaway greenhouse effect, and on both of those planets you are seeing this phenomenon of the atmosphere leaking away, is actually what directly has led to those very different outcomes for those planets; the specifics of what happened as the atmosphere started to go in each case [made] all the difference.
Scientists know that the clouds can act as a sunshield, cooling parts of the globe and offsetting the global warming caused by the greenhouse effect (see «Not warming, but cooling», New Scientist, 9 July 1994).
«Water evaporation and condensation processes as well as the strong greenhouse effect of water vapor and clouds decisively influence the energy balance of the atmosphere and the entire planet,» says Matthias Schneider from the KIT Institute of Meteorology and Climate Research (IMK).
And higher cloud tops create even more of a blanketing greenhouse effect.
As the area of this cloud cover grows, it reflects more of the shortwave radiation; but as the clouds get taller, their greenhouse effect becomes more significant, counteracting about half of their total cooling effect
Water evaporating from the oceans may set off a runaway greenhouse effect that turns Earth into a damp version of Venus, wrapped permanently in a thick, white blanket of cloud.
The amount of energy being trapped on Earth continues to rise at a quickening pace, because of the effects of the thickening cloud of greenhouse gas pollution in the atmosphere, but more of that energy than usual has been ending up in the oceans.
Located between the orbits of Mercury and Earth, Venus has a very thick atmosphere that is covered by a layer of clouds that produces a «greenhouse effect» on the planet.
g (acceleration due to gravity) G (gravitational constant) G star G1.9 +0.3 gabbro Gabor, Dennis (1900 — 1979) Gabriel's Horn Gacrux (Gamma Crucis) gadolinium Gagarin, Yuri Alexeyevich (1934 — 1968) Gagarin Cosmonaut Training Center GAIA Gaia Hypothesis galactic anticenter galactic bulge galactic center Galactic Club galactic coordinates galactic disk galactic empire galactic equator galactic habitable zone galactic halo galactic magnetic field galactic noise galactic plane galactic rotation galactose Galatea GALAXIES galaxy galaxy cannibalism galaxy classification galaxy formation galaxy interaction galaxy merger Galaxy, The Galaxy satellite series Gale Crater Galen (c. AD 129 — c. 216) galena GALEX (Galaxy Evolution Explorer) Galilean satellites Galilean telescope Galileo (Galilei, Galileo)(1564 — 1642) Galileo (spacecraft) Galileo Europa Mission (GEM) Galileo satellite navigation system gall gall bladder Galle, Johann Gottfried (1812 — 1910) gallic acid gallium gallon gallstone Galois, Évariste (1811 — 1832) Galois theory Galton, Francis (1822 — 1911) Galvani, Luigi (1737 — 1798) galvanizing galvanometer game game theory GAMES AND PUZZLES gamete gametophyte Gamma (Soviet orbiting telescope) Gamma Cassiopeiae Gamma Cassiopeiae star gamma function gamma globulin gamma rays Gamma Velorum gamma - ray burst gamma - ray satellites Gamow, George (1904 — 1968) ganglion gangrene Ganswindt, Hermann (1856 — 1934) Ganymede «garbage theory», of the origin of life Gardner, Martin (1914 — 2010) Garneau, Marc (1949 ---RRB- garnet Garnet Star (Mu Cephei) Garnet Star Nebula (IC 1396) garnierite Garriott, Owen K. (1930 ---RRB- Garuda gas gas chromatography gas constant gas giant gas laws gas - bounded nebula gaseous nebula gaseous propellant gaseous - propellant rocket engine gasoline Gaspra (minor planet 951) Gassendi, Pierre (1592 — 1655) gastric juice gastrin gastrocnemius gastroenteritis gastrointestinal tract gastropod gastrulation Gatewood, George D. (1940 ---RRB- Gauer - Henry reflex gauge boson gauge theory gauss (unit) Gauss, Carl Friedrich (1777 — 1855) Gaussian distribution Gay - Lussac, Joseph Louis (1778 — 1850) GCOM (Global Change Observing Mission) Geber (c. 720 — 815) gegenschein Geiger, Hans Wilhelm (1882 — 1945) Geiger - Müller counter Giessler tube gel gelatin Gelfond's theorem Gell - Mann, Murray (1929 ---RRB- GEM «gemination,» of martian canals Geminga Gemini (constellation) Gemini Observatory Gemini Project Gemini - Titan II gemstone gene gene expression gene mapping gene pool gene therapy gene transfer General Catalogue of Variable Stars (GCVS) general precession general theory of relativity generation ship generator Genesis (inflatable orbiting module) Genesis (sample return probe) genetic code genetic counseling genetic disorder genetic drift genetic engineering genetic marker genetic material genetic pool genetic recombination genetics GENETICS AND HEREDITY Geneva Extrasolar Planet Search Program genome genome, interstellar transmission of genotype gentian violet genus geoboard geode geodesic geodesy geodesy satellites geodetic precession Geographos (minor planet 1620) geography GEOGRAPHY Geo - IK geologic time geology GEOLOGY AND PLANETARY SCIENCE geomagnetic field geomagnetic storm geometric mean geometric sequence geometry GEOMETRY geometry puzzles geophysics GEOS (Geodetic Earth Orbiting Satellite) Geosat geostationary orbit geosynchronous orbit geosynchronous / geostationary transfer orbit (GTO) geosyncline Geotail (satellite) geotropism germ germ cells Germain, Sophie (1776 — 1831) German Rocket Society germanium germination Gesner, Konrad von (1516 — 1565) gestation Get Off the Earth puzzle Gettier problem geyser g - force GFO (Geosat Follow - On) GFZ - 1 (GeoForschungsZentrum) ghost crater Ghost Head Nebula (NGC 2080) ghost image Ghost of Jupiter (NGC 3242) Giacconi, Riccardo (1931 ---RRB- Giacobini - Zinner, Comet (Comet 21P /) Giaever, Ivar (1929 ---RRB- giant branch Giant Magellan Telescope giant molecular cloud giant planet giant star Giant's Causeway Giauque, William Francis (1895 — 1982) gibberellins Gibbs, Josiah Willard (1839 — 1903) Gibbs free energy Gibson, Edward G. (1936 ---RRB- Gilbert, William (1544 — 1603) gilbert (unit) Gilbreath's conjecture gilding gill gill (unit) Gilruth, Robert R. (1913 — 2000) gilsonite gimbal Ginga ginkgo Giotto (ESA Halley probe) GIRD (Gruppa Isutcheniya Reaktivnovo Dvisheniya) girder glacial drift glacial groove glacier gland Glaser, Donald Arthur (1926 — 2013) Glashow, Sheldon (1932 ---RRB- glass GLAST (Gamma - ray Large Area Space Telescope) Glauber, Johann Rudolf (1607 — 1670) glaucoma glauconite Glenn, John Herschel, Jr. (1921 ---RRB- Glenn Research Center Glennan, T (homas) Keith (1905 — 1995) glenoid cavity glia glial cell glider Gliese 229B Gliese 581 Gliese 67 (HD 10307, HIP 7918) Gliese 710 (HD 168442, HIP 89825) Gliese 86 Gliese 876 Gliese Catalogue glioma glissette glitch Global Astrometric Interferometer for Astrophysics (GAIA) Global Oscillation Network Group (GONG) Globalstar globe Globigerina globular cluster globular proteins globule globulin globus pallidus GLOMR (Global Low Orbiting Message Relay) GLONASS (Global Navigation Satellite System) glossopharyngeal nerve Gloster E. 28/39 glottis glow - worm glucagon glucocorticoid glucose glucoside gluon Glushko, Valentin Petrovitch (1908 — 1989) glutamic acid glutamine gluten gluteus maximus glycerol glycine glycogen glycol glycolysis glycoprotein glycosidic bond glycosuria glyoxysome GMS (Geosynchronous Meteorological Satellite) GMT (Greenwich Mean Time) Gnathostomata gneiss Go Go, No - go goblet cell GOCE (Gravity field and steady - state Ocean Circulation Explorer) God Goddard, Robert Hutchings (1882 — 1945) Goddard Institute for Space Studies Goddard Space Flight Center Gödel, Kurt (1906 — 1978) Gödel universe Godwin, Francis (1562 — 1633) GOES (Geostationary Operational Environmental Satellite) goethite goiter gold Gold, Thomas (1920 — 2004) Goldbach conjecture golden ratio (phi) Goldin, Daniel Saul (1940 ---RRB- gold - leaf electroscope Goldstone Tracking Facility Golgi, Camillo (1844 — 1926) Golgi apparatus Golomb, Solomon W. (1932 — 2016) golygon GOMS (Geostationary Operational Meteorological Satellite) gonad gonadotrophin - releasing hormone gonadotrophins Gondwanaland Gonets goniatite goniometer gonorrhea Goodricke, John (1764 — 1786) googol Gordian Knot Gordon, Richard Francis, Jr. (1929 — 2017) Gore, John Ellard (1845 — 1910) gorge gorilla Gorizont Gott loop Goudsmit, Samuel Abraham (1902 — 1978) Gould, Benjamin Apthorp (1824 — 1896) Gould, Stephen Jay (1941 — 2002) Gould Belt gout governor GPS (Global Positioning System) Graaf, Regnier de (1641 — 1673) Graafian follicle GRAB graben GRACE (Gravity Recovery and Climate Experiment) graceful graph gradient Graham, Ronald (1935 ---RRB- Graham, Thomas (1805 — 1869) Graham's law of diffusion Graham's number GRAIL (Gravity Recovery and Interior Laboratory) grain (cereal) grain (unit) gram gram - atom Gramme, Zénobe Théophile (1826 — 1901) gramophone Gram's stain Gran Telescopio Canarias (GTC) Granat Grand Tour grand unified theory (GUT) Grandfather Paradox Granit, Ragnar Arthur (1900 — 1991) granite granulation granule granulocyte graph graph theory graphene graphite GRAPHS AND GRAPH THEORY graptolite grass grassland gravel graveyard orbit gravimeter gravimetric analysis Gravitational Biology Facility gravitational collapse gravitational constant (G) gravitational instability gravitational lens gravitational life gravitational lock gravitational microlensing GRAVITATIONAL PHYSICS gravitational slingshot effect gravitational waves graviton gravity gravity gradient gravity gradient stabilization Gravity Probe A Gravity Probe B gravity - assist gray (Gy) gray goo gray matter grazing - incidence telescope Great Annihilator Great Attractor great circle Great Comets Great Hercules Cluster (M13, NGC 6205) Great Monad Great Observatories Great Red Spot Great Rift (in Milky Way) Great Rift Valley Great Square of Pegasus Great Wall greater omentum greatest elongation Green, George (1793 — 1841) Green, Nathaniel E. Green, Thomas Hill (1836 — 1882) green algae Green Bank Green Bank conference (1961) Green Bank Telescope green flash greenhouse effect greenhouse gases Green's theorem Greg, Percy (1836 — 1889) Gregorian calendar Grelling's paradox Griffith, George (1857 — 1906) Griffith Observatory Grignard, François Auguste Victor (1871 — 1935) Grignard reagent grike Grimaldi, Francesco Maria (1618 — 1663) Grissom, Virgil (1926 — 1967) grit gritstone Groom Lake Groombridge 34 Groombridge Catalogue gross ground, electrical ground state ground - track group group theory GROUPS AND GROUP THEORY growing season growth growth hormone growth hormone - releasing hormone growth plate Grudge, Project Gruithuisen, Franz von Paula (1774 — 1852) Grus (constellation) Grus Quartet (NGC 7552, NGC 7582, NGC 7590, and NGC 7599) GSLV (Geosynchronous Satellite Launch Vehicle) g - suit G - type asteroid Guericke, Otto von (1602 — 1686) guanine Guiana Space Centre guidance, inertial Guide Star Catalog (GSC) guided missile guided missiles, postwar development Guillaume, Charles Édouard (1861 — 1938) Gulf Stream (ocean current) Gulfstream (jet plane) Gullstrand, Allvar (1862 — 1930) gum Gum Nebula gun metal gunpowder Gurwin Gusev Crater gut Gutenberg, Johann (c. 1400 — 1468) Guy, Richard Kenneth (1916 ---RRB- guyot Guzman Prize gymnosperm gynecology gynoecium gypsum gyrocompass gyrofrequency gyropilot gyroscope gyrostabilizer Gyulbudagian's Nebula (HH215)
They tend to believe that as the planet warms, low - level cloud cover will increase, thus increasing planetary albedo (overall reflectiveness of the Earth), offsetting the increased greenhouse effect and preventing a dangerous level of global warming from occurring.
Note that the last remark can go either way, as the solar signal can even be more enhanced at the cost of the sensitivity for the greenhouse signal... And from Hansen ea.: «Solar irradiance change has a strong spectral dependence [Lean, 2000], and resulting climate changes may include indirect effects of induced ozone change [RFCR; Haigh, 1999; Shindell et al., 1999a] and conceivably even cosmic ray effects on clouds [Dickinson, 1975].
The main research themes include greenhouse gas concentrations and ecosystem — atmosphere fluxes, the climate effects of atmospheric aerosols, aerosol — cloud interactions and air quality.
There is a clear impact on global temperature, too, though the mechanisms are complex: heat released from the oceans; increases in water vapor, which enhance the greenhouse effect, and redistributions of clouds.
Four and a half billion years after its birth, the shrouded planet is much too hot to support the presence of liquid water on its surface because of its dense carbon dioxide atmosphere and sulfuric acid clouds, which retain too much radiative heat from the Sun through a runaway greenhouse effect.
«By comparing the response of clouds and water vapor to ENSO forcing in nature with that in AMIP simulations by some leading climate models, an earlier evaluation of tropical cloud and water vapor feedbacks has revealed two common biases in the models: (1) an underestimate of the strength of the negative cloud albedo feedback and (2) an overestimate of the positive feedback from the greenhouse effect of water vapor.
Data from satellite observations «suggest that greenhouse models ignore negative feedback produced by clouds and by water vapor, that diminish the warming effects» of human carbon dioxide emissions.
However, there is a price of sorts — while locally the Asian Brown Cloud amplifies the greenhouse effect, globally it masks the greenhouse effect due to the aerosol - induced global dimming.
[Response: These feedbacks are indeed modelled because they depend not on the trace greenhouse gas amounts, but on the variation of seasonal incoming solar radiation and effects like snow cover, water vapour amounts, clouds and the diurnal cycle.
Unknown is what the overall effect of greenhouse gases / temperature was / is / will be on cloud cover.
Kasting had one very primitive go at a radiative - convective study of the effect of clouds on runaway greenhouse, which suggested that clouds might prevent the whole ocean from going aloft.
Re 9 wili — I know of a paper suggesting, as I recall, that enhanced «backradiation» (downward radiation reaching the surface emitted by the air / clouds) contributed more to Arctic amplification specifically in the cold part of the year (just to be clear, backradiation should generally increase with any warming (aside from greenhouse feedbacks) and more so with a warming due to an increase in the greenhouse effect (including feedbacks like water vapor and, if positive, clouds, though regional changes in water vapor and clouds can go against the global trend); otherwise it was always my understanding that the albedo feedback was key (while sea ice decreases so far have been more a summer phenomenon (when it would be warmer to begin with), the heat capacity of the sea prevents much temperature response, but there is a greater build up of heat from the albedo feedback, and this is released in the cold part of the year when ice forms later or would have formed or would have been thicker; the seasonal effect of reduced winter snow cover decreasing at those latitudes which still recieve sunlight in the winter would not be so delayed).
In contrast, the albedo effect of clouds goes up a bit slower with water content than the greenhouse effect.
Cloud feedbacks may be complicated, but a simple rule of thumb that emerges from that complexity is that high clouds exert a strong greenhouse effect and low clouds don't.
Re # 36 Lawrence, your cousin is correct that the greenhouse effect of water vapour, and even more so clouds are much larger (x 2 — x 4) than that from CO2.
The mechanism which they claim to have identified is actually the opposite of what Lindzen described, where he claimed that clouds would increase as the result of the greenhouse effect and their albedo effect would hold down temperatures, but in the tropics the clouds that Spencer et al were dealing with presumably become fewer in number.
Spencer et al (2007) is cited as evidence for the iris effect of Lindzen in order to conclude that the negative feedbacks to the greenhouse effect due to clouds will be substantial.
So with the «greenhouse gas effect» if I add more CO2 AND all other things remain equal, temperature will increase, but if clouds are a regulating mechanism, adding more CO2 doesn't have to change temperature at all, just the amount of energy required to maintain that temperature would be reduced.
That equilibrium point between solar heating of the ocean and clouds starving the ocean of solar heating is in effect a saturated greenhouse.
Less well appreciated is that clouds (made of ice particles and / or liquid water droplets) also absorb infrared radiation and contribute to the greenhouse effect, too.
and: «Earth type planetary atmospheres, having partial cloud cover and sufficient reservoir of water; maintain an energetically uniquely determined, constant, maximized greenhouse effect that can not be increased further by emissions.
I propose a simple dependence of cloud cover and water vapor greenhouse effect on incident solar radiance which can maintains temperatures to 0.5 degrees over the last 4 billion years.
Namely, that the greenhouse effect simply does not exist and OLR is not absorbed by that cloud of carbon dioxide on its way to outer space.
Its warming effect, however, is simultaneously amplified and dampened by positive and negative feedbacks such as increased water vapor (the most powerful greenhouse gas), reduced albedo, which is a measure of Earth's reflectivity, changes in cloud characteristics, and CO2 exchanges with the ocean and terrestrial ecosystems.
The overall effect of the high thin cirrus clouds then is to enhance atmospheric greenhouse warming.
abstract postscript pdf Pierrehumbert, RT and Erlick C 1997: On the scattering greenhouse effect of CO2 ice clouds.
An increased greenhouse effect due to humidity, CO2, aerosols or clouds is expected to produce a relative increase of the minima with respect to the maxima and a decrease of the diurnal range.
The ONLY greenhouse type of effect occurs as a result of the effects of clouds, especially the large and reflective type which are generally cumulous (low) clouds and to some extent cirrus and stratos, but mostly the low clouds.
While CO2 is indeed a greenhouse gas, increasing concentrations of which may be expected to have (other things being equal) a warming effect, scientists disagree about how large that effect may be (this is particularly affected by ignorance of the effect of clouds).
The Earth's surface temperature is 35 K warmer than its effective blackbody temperature, because of the presence of clouds and GHGs or called the natural greenhouse effect.
Andrew Lacis wrote: (3) Water vapor and clouds account for about 75 % the strength of the terrestrial greenhouse effect, but are feedback effects that require sustained radiative forcing to maintain their atmospheric distribution.
Non-condensing greenhouse gases, which account for 25 % of the total terrestrial greenhouse effect, thus serve to provide the stable temperature structure that sustains the current levels of atmospheric water vapor and clouds via feedback processes that account for the remaining 75 % of the greenhouse effect.
The paper also makes a bit of a digression in pointing out the erroneous and irresponsible assertion by Dick Lindzen that «about 98 % of the natural greenhouse effect is due to water vapour and stratiform clouds withCO2 contributing less than 2 %».
It does magnify the night - time greenhouse effect by warming the clouds or the higher levels of the atmosphere, thus increasing the amount of heat radiated back to the surface; though the overall effect is to reduce net planetary greenhouse warming by limiting the temperature gradient.
Noncondensing greenhouse gases, which account for 25 % of the total terrestrial greenhouse effect, thus serve to provide the stable temperaturestructure that sustains the current levels of atmospheric water vapor and clouds via feedback processes that account for the remaining 75 % of the greenhouse effect.
Instead, the aim of our Science paper was to illustrate as clearly and as simply as possible the basic operating principles of the terrestrial greenhouse effect in terms of the sustaining radiative forcing that is provided by the non-condensing greenhouse gases, which is further augmented by the feedback response of water vapor and clouds.
Noncondensing greenhouse gases, which account for 25 % of the total terrestrial greenhouse effect, thus serve to provide the stable temperature structure that sustains the current levels of atmospheric water vapor and clouds via feedback processes that account for the remaining 75 % of the greenhouse effect.
(3) Water vapor and clouds account for about 75 % the strength of the terrestrial greenhouse effect, but are feedback effects that require sustained radiative forcing to maintain their atmospheric distribution.
a b c d e f g h i j k l m n o p q r s t u v w x y z