Sentences with phrase «human cell dysfunctions»

Unravelling this mechanism could also help scientists understand more about human cell dysfunctions linked to disorders such as diabetes, Parkinson's and other neurodegenerative diseases.

Not exact matches

Physician David Nathan, director of the diabetes center at Massachusetts General Hospital in Boston, notes in an email message that «what is ironic here is that [free radicals are] generally thought to be bad in human diabetes,» because they lead to dysfunction in the cells that make insulin and vascular complications.
We also demonstrate that NS1 from DENV1, DENV2, DENV3, and DENV4 triggers endothelial barrier dysfunction, causing increased permeability of human endothelial cell monolayers in vitro.
iPS cells enable to enlarge applications for modeling numerous human pathologies, reproducing the dysfunction processes of damaged tissue, and developing targeted medicine.
The overall goal of this research is to provide new insight into the function and dysfunction of human neural cell populations in aging and neurological disorders, such as LOAD, and to identify mechanisms and molecules that can be translated to developing and testing novel diagnostic tools and therapeutics.
Dysfunction of mitochondria, the energy - generating organelle in human cells, is one hypothesis concerning the severe fatigue experienced by ME / CFS patients.
Human iPS cell - derived hepatocytes differentiated with our robust differentiation protocol and cultured using our novel maintenance medium provide an inexhaustible, consistent supply of functional hepatocytes that can be used to advance the understanding of diseases related to dysfunction in liver metabolism, including NAFLD / NASH, type 2 diabetes, and metabolic syndrome.
Human iPS cell - derived hepatocytes differentiated with our robust differentiation protocol and cultured using a novel maintenance medium provide an inexhaustible, consistent supply of functional hepatocytes that can be used to advance the understanding of diseases related to dysfunction in liver metabolism, including NAFLD / NASH, type 2 diabetes, and metabolic syndrome.
Highly active antiretroviral therapy drug combination induces oxidative stress and mitochondrial dysfunction in immortalized human blood — brain barrier endothelial cells.
His plans for research in his own lab involve «continuing to look at the mechanisms of T cell dysfunction in human and mice.
Pilar received her PhD in 2017 at the Complutense University of Madrid, where she studied immune cell dysfunction and hyperactivation in HIV / HCV coinfected patients, as well as the in vitro and in vivo activity of nanoparticles against HIV - 1 and HSV - 2 infections to prevent their transmission in humans as a topical microbicide.
Susan Amara, USA - «Regulation of transporter function and trafficking by amphetamines, Structure - function relationships in excitatory amino acid transporters (EAATs), Modulation of dopamine transporters (DAT) by GPCRs, Genetics and functional analyses of human trace amine receptors» Tom I. Bonner, USA (Past Core Member)- Genomics, G protein coupled receptors Michel Bouvier, Canada - Molecular Pharmacology of G protein - Coupled Receptors; Molecular mechanisms controlling the selectivity and efficacy of GPCR signalling Thomas Burris, USA - Nuclear Receptor Pharmacology and Drug Discovery William A. Catterall, USA (Past Core Member)- The Molecular Basis of Electrical Excitability Steven Charlton, UK - Molecular Pharmacology and Drug Discovery Moses Chao, USA - Mechanisms of Neurotophin Receptor Signaling Mark Coles, UK - Cellular differentiation, human embryonic stem cells, stromal cells, haematopoietic stem cells, organogenesis, lymphoid microenvironments, develomental immunology Steven L. Colletti, USA Graham L Collingridge, UK Philippe Delerive, France - Metabolic Research (diabetes, obesity, non-alcoholic fatty liver, cardio - vascular diseases, nuclear hormone receptor, GPCRs, kinases) Sir Colin T. Dollery, UK (Founder and Past Core Member) Richard M. Eglen, UK Stephen M. Foord, UK David Gloriam, Denmark - GPCRs, databases, computational drug design, orphan recetpors Gillian Gray, UK Debbie Hay, New Zealand - G protein - coupled receptors, peptide receptors, CGRP, Amylin, Adrenomedullin, Migraine, Diabetes / obesity Allyn C. Howlett, USA Franz Hofmann, Germany - Voltage dependent calcium channels and the positive inotropic effect of beta adrenergic stimulation; cardiovascular function of cGMP protein kinase Yu Huang, Hong Kong - Endothelial and Metabolic Dysfunction, and Novel Biomarkers in Diabetes, Hypertension, Dyslipidemia and Estrogen Deficiency, Endothelium - derived Contracting Factors in the Regulation of Vascular Tone, Adipose Tissue Regulation of Vascular Function in Obesity, Diabetes and Hypertension, Pharmacological Characterization of New Anti-diabetic and Anti-hypertensive Drugs, Hypotensive and antioxidant Actions of Biologically Active Components of Traditional Chinese Herbs and Natural Plants including Polypehnols and Ginsenosides Adriaan P. IJzerman, The Netherlands - G protein - coupled receptors; allosteric modulation; binding kinetics Michael F Jarvis, USA - Purines and Purinergic Receptors and Voltage-gated ion channel (sodium and calcium) pharmacology Pain mechanisms Research Reproducibility Bong - Kiun Kaang, Korea - G protein - coupled receptors; Glutamate receptors; Neuropsychiatric disorders Eamonn Kelly, Prof, UK - Molecular Pharmacology of G protein - coupled receptors, in particular opioid receptors, regulation of GPCRs by kinasis and arrestins Terry Kenakin, USA - Drug receptor pharmacodynamics, receptor theory Janos Kiss, Hungary - Neurodegenerative disorders, Alzheimer's disease Stefan Knapp, Germany - Rational design of highly selective inhibitors (so call chemical probes) targeting protein kinases as well as protein interaction inhibitors of the bromodomain family Andrew Knight, UK Chris Langmead, Australia - Drug discovery, GPCRs, neuroscience and analytical pharmacology Vincent Laudet, France (Past Core Member)- Evolution of the Nuclear Receptor / Ligand couple Margaret R. MacLean, UK - Serotonin, endothelin, estrogen, microRNAs and pulmonary hyperten Neil Marrion, UK - Calcium - activated potassium channels, neuronal excitability Fiona Marshall, UK - GPCR molecular pharmacology, structure and drug discovery Alistair Mathie, UK - Ion channel structure, function and regulation, pain and the nervous system Ian McGrath, UK - Adrenoceptors; autonomic transmission; vascular pharmacology Graeme Milligan, UK - Structure, function and regulation of G protein - coupled receptors Richard Neubig, USA (Past Core Member)- G protein signaling; academic drug discovery Stefan Offermanns, Germany - G protein - coupled receptors, vascular / metabolic signaling Richard Olsen, USA - Structure and function of GABA - A receptors; mode of action of GABAergic drugs including general anesthetics and ethanol Jean - Philippe Pin, France (Past Core Member)- GPCR - mGLuR - GABAB - structure function relationship - pharmacology - biophysics Helgi Schiöth, Sweden David Searls, USA - Bioinformatics Graeme Semple, USA - GPCR Medicinal Chemistry Patrick M. Sexton, Australia - G protein - coupled receptors Roland Staal, USA - Microglia and neuroinflammation in neuropathic pain and neurological disorders Bart Staels, France - Nuclear receptor signaling in metabolic and cardiovascular diseases Katerina Tiligada, Greece - Immunopharmacology, histamine, histamine receptors, hypersensitivity, drug allergy, inflammation Georg Terstappen, Germany - Drug discovery for neurodegenerative diseases with a focus on AD Mary Vore, USA - Activity and regulation of expression and function of the ATP - binding cassette (ABC) transporters
«Despite clear potential benefits for individuals with T1D, research into human alpha cell dysfunction within the context of T1D has been underappreciated and underfunded,» said Dr. Ben Williams, Program Officer of Helmsley's Type 1 Diabetes Program.
By reprogramming human skin cells and other cells from patients with neurologic and psychiatric diseases into induced pluripotent stem cells (iPSCs) and induced neurons (iN), his work seeks to decipher the progression and mechanisms that lead to brain cell dysfunction.
Cognitive dysfunction happens when nerve cells start to die and there is malfunction in nerve communication, similar to Alzheimer's in humans.
a b c d e f g h i j k l m n o p q r s t u v w x y z