Sentences with phrase «kinase activity as»

«As a result, researchers have used the presence of IBs and heightened kinase activity as a proxy for measuring LRRK2's harmful effects, rather than measuring LRRK2 levels directly,» explained Dr. Finkbeiner.
«As a result, researchers have used the presence of IBs and heightened kinase activity as a proxy for measuring LRRK2's harmful effects, rather than measuring LRRK2 levels directly,» explained Dr. Finkbeiner, who is the associate director of neurological research at Gladstone as well as a professor at the University of California, San Francisco, with which Gladstone is affiliated.

Not exact matches

But major pharmaceutical laboratories are investigating highly selective inhibitors of this molecular linchpin, many of them targeted at the enzymes (such as I - kB kinase) that regulate NF - kB activity.
As the name suggests, kinase inhibitors interrupt the function of kinases — a particular type of enzyme — and effectively shut down the activity of proteins that contribute to cancer.
The kinase activity of RIPK1 mediates hypothermia and lethality in a mouse model of TNF - induced shock, reflecting the hyperinflammatory state of systemic inflammatory response syndrome (SIRS), where the proinflammatory «cytokine storm» has long been viewed as detrimental.
LKB1, originally identified as a tumor suppressor protein, is currently thought as a critical regulator of cellular metabolism and growth by controlling the activity of AMP - activated protein kinase (AMPK) and also 12 other kinases that are closely related to AMPK.
To cite a few instances, polymerase chain reaction (PCR), a molecular method developed over three decades ago, has been widely applied in disease diagnosis, disease mechanism deciphering, and prognosis prediction; the elucidation of tyrosine kinase activity in cancer cells has led to the development of novel drugs for cancer treatment; and the identification of proteins and genetic molecules by molecular methods as biomarkers for disease diagnosis and prognosis has been drawing great interest.
Since November 2013, as part of SGC, Clara mainly investigates different subfamilies of kinases involved in alternative splicing through phosphorylation - mediated regulation of SR proteins activity.
Additionally, we identified p21waf1 / cip1, a cyclin - dependent kinase inhibitor, as a target gene of DDX3, and the up - regulation of p21waf1 / cip1 expression accounted for the colony - suppressing activity of DDX3.
In 2005, the identification of an activating mutation in JAK2 (the V617F mutation) as a STAT5 - activating and disease - causing genetic alteration in a significant proportion of patients with myeloproliferative neoplasms (MPNs) has emphasized the oncogenic role of the JAK tyrosine kinases in hematologic malignancies.2 — 5 JAK2 is a member of the Janus tyrosine kinase family comprising three other mammalian non-receptor tyrosine kinases (JAK1, JAK3 and TYK2) that associate with cytokine receptors lacking intrinsic kinase activity to mediate cytokine - induced signal transduction and activation of STAT transcription factors.6 All JAKs share a similar protein structure and contain a tyrosine kinase domain at the C - terminus flanked by a catalytically inactive pseudokinase domain with kinase - regulatory activity, by an atypical SH2 domain and by a FERM domain that mediates association to the membrane - proximal region of the cytokine receptors.7, 8 Soon after the discovery of JAK2 V617F, we and others described that activating JAK1 mutations are relatively common in adult patients with T - cell acute lymphoblastic leukemia (ALL) and participate in ALL development allowing for constitutive activation of STAT5.9 — 11 Several STAT5 - activating JAK1 mutations were also reported in AML and breast cancer patients.10
Susan Amara, USA - «Regulation of transporter function and trafficking by amphetamines, Structure - function relationships in excitatory amino acid transporters (EAATs), Modulation of dopamine transporters (DAT) by GPCRs, Genetics and functional analyses of human trace amine receptors» Tom I. Bonner, USA (Past Core Member)- Genomics, G protein coupled receptors Michel Bouvier, Canada - Molecular Pharmacology of G protein - Coupled Receptors; Molecular mechanisms controlling the selectivity and efficacy of GPCR signalling Thomas Burris, USA - Nuclear Receptor Pharmacology and Drug Discovery William A. Catterall, USA (Past Core Member)- The Molecular Basis of Electrical Excitability Steven Charlton, UK - Molecular Pharmacology and Drug Discovery Moses Chao, USA - Mechanisms of Neurotophin Receptor Signaling Mark Coles, UK - Cellular differentiation, human embryonic stem cells, stromal cells, haematopoietic stem cells, organogenesis, lymphoid microenvironments, develomental immunology Steven L. Colletti, USA Graham L Collingridge, UK Philippe Delerive, France - Metabolic Research (diabetes, obesity, non-alcoholic fatty liver, cardio - vascular diseases, nuclear hormone receptor, GPCRs, kinases) Sir Colin T. Dollery, UK (Founder and Past Core Member) Richard M. Eglen, UK Stephen M. Foord, UK David Gloriam, Denmark - GPCRs, databases, computational drug design, orphan recetpors Gillian Gray, UK Debbie Hay, New Zealand - G protein - coupled receptors, peptide receptors, CGRP, Amylin, Adrenomedullin, Migraine, Diabetes / obesity Allyn C. Howlett, USA Franz Hofmann, Germany - Voltage dependent calcium channels and the positive inotropic effect of beta adrenergic stimulation; cardiovascular function of cGMP protein kinase Yu Huang, Hong Kong - Endothelial and Metabolic Dysfunction, and Novel Biomarkers in Diabetes, Hypertension, Dyslipidemia and Estrogen Deficiency, Endothelium - derived Contracting Factors in the Regulation of Vascular Tone, Adipose Tissue Regulation of Vascular Function in Obesity, Diabetes and Hypertension, Pharmacological Characterization of New Anti-diabetic and Anti-hypertensive Drugs, Hypotensive and antioxidant Actions of Biologically Active Components of Traditional Chinese Herbs and Natural Plants including Polypehnols and Ginsenosides Adriaan P. IJzerman, The Netherlands - G protein - coupled receptors; allosteric modulation; binding kinetics Michael F Jarvis, USA - Purines and Purinergic Receptors and Voltage-gated ion channel (sodium and calcium) pharmacology Pain mechanisms Research Reproducibility Bong - Kiun Kaang, Korea - G protein - coupled receptors; Glutamate receptors; Neuropsychiatric disorders Eamonn Kelly, Prof, UK - Molecular Pharmacology of G protein - coupled receptors, in particular opioid receptors, regulation of GPCRs by kinasis and arrestins Terry Kenakin, USA - Drug receptor pharmacodynamics, receptor theory Janos Kiss, Hungary - Neurodegenerative disorders, Alzheimer's disease Stefan Knapp, Germany - Rational design of highly selective inhibitors (so call chemical probes) targeting protein kinases as well as protein interaction inhibitors of the bromodomain family Andrew Knight, UK Chris Langmead, Australia - Drug discovery, GPCRs, neuroscience and analytical pharmacology Vincent Laudet, France (Past Core Member)- Evolution of the Nuclear Receptor / Ligand couple Margaret R. MacLean, UK - Serotonin, endothelin, estrogen, microRNAs and pulmonary hyperten Neil Marrion, UK - Calcium - activated potassium channels, neuronal excitability Fiona Marshall, UK - GPCR molecular pharmacology, structure and drug discovery Alistair Mathie, UK - Ion channel structure, function and regulation, pain and the nervous system Ian McGrath, UK - Adrenoceptors; autonomic transmission; vascular pharmacology Graeme Milligan, UK - Structure, function and regulation of G protein - coupled receptors Richard Neubig, USA (Past Core Member)- G protein signaling; academic drug discovery Stefan Offermanns, Germany - G protein - coupled receptors, vascular / metabolic signaling Richard Olsen, USA - Structure and function of GABA - A receptors; mode of action of GABAergic drugs including general anesthetics and ethanol Jean - Philippe Pin, France (Past Core Member)- GPCR - mGLuR - GABAB - structure function relationship - pharmacology - biophysics Helgi Schiöth, Sweden David Searls, USA - Bioinformatics Graeme Semple, USA - GPCR Medicinal Chemistry Patrick M. Sexton, Australia - G protein - coupled receptors Roland Staal, USA - Microglia and neuroinflammation in neuropathic pain and neurological disorders Bart Staels, France - Nuclear receptor signaling in metabolic and cardiovascular diseases Katerina Tiligada, Greece - Immunopharmacology, histamine, histamine receptors, hypersensitivity, drug allergy, inflammation Georg Terstappen, Germany - Drug discovery for neurodegenerative diseases with a focus on AD Mary Vore, USA - Activity and regulation of expression and function of the ATP - binding cassette (ABC) transporters
In addition, altered enzymatic activities, such as an increased phosphatase activity and / or seryl phosphorylation of the insulin receptor substrate by glycogen synthase kinase - 3 (GSK - 3), have also been shown to be involved in some cases of type 2 diabetes (19,20).
a b c d e f g h i j k l m n o p q r s t u v w x y z