Sentences with phrase «net radiation flux»

When Spencer examined this method for estimating alpha, he surmised that it assumes the temperature changes are the cause of the changes in net radiation flux.
So actually the local radiation field is much simpler that what you're trying to describe: in the transparent windows, it's just the emitted intensity from the source (sun + ground), and in the opaque lines, it is nearly isotropic with the excitation temperature of the molecules close to the local kinetic temperature if collisions are numerous enough, with a small anisotropy linked to the net radiation flux.

Not exact matches

ocean system is associated with an amplified increase in arctic surface air temperature, downward longwave radiation, and net heat flux.
This means that there is an upward surface flux of LW around (~ 390 W / m2), while the outward flux at the top of the atmosphere (TOA) is roughly equivalent to the net solar radiation coming in (1 - a) S / 4 (~ 240 W / m2).
The warming of the world ocean is associated with an increase in global surface air temperature, downward longwave radiation, and therefore net heat flux.
Trends as a function of CSD, Saturation: If the temperature varies monotonically over the distance from which most of the radiation reaching that level is emitted, then increasing the CSD will bring the upward and downward fluxes and intensities (at a given angle) toward the same value, reducing the net intensities and fluxes, until eventually they approach zero (or a nonzero saturation value at TOA).
ocean system is associated with an amplified increase in arctic surface air temperature, downward longwave radiation, and net heat flux.
The downward radiation at the surface would be σ * (Tsa ^ 4 — 2/3 * T4grad) The upward radiation would have to be σ * (Tsa ^ 4 + 2/3 * T4grad) in order for the net upward flux to be constant through the air, which requires Ts ^ 4 = Tsa ^ 4 + 2/3 * T4grad.
The increase / decrease of net upward LW flux going from one level to a higher level equals the net cooling / heating of that layer by LW radiation — in equilibrium this must be balanaced by solar heating / cooling + convective / conductive heating / cooling, and those are related to flux variation in height in the same way.
The equilibrium response to an addition of RF at a level is an increase in net upward flux consisting of LW radiation (the Planck response, PR) plus a convective flux response CR; CR is approximately zero at and above the tropopause in the global time average.
If it is in an isothermal layer, it will radiate upward as much as downward; it will decrease the baseline TRPP net flux and increase the baseline TOA flux by the same amount, but it will decrease the baseline TOA flux by a greater amount if it is absorbing radiation with a higher brightness temperature from below (the baseline upward flux at TRPP), so it will increase the amount by which the baseline net flux at TRPP is greater than that at TOA.
The combination of decreasing upward flux and increasing downward flux add to a decreasing net upward flux (true for both SW and LW radiation).
where is the vertically integrated energy flux in the atmosphere, is the net radiative energy input to an atmospheric column (the difference between absorbed shortwave radiation and emitted longwave radiation), and is the oceanic energy uptake at the surface.
Our observational studies (Gray and Schwartz, 2010 and 2011) of the variations of outward radiation (IR + albedo) energy flux to space (ISCCP data) vs. tropical and global precipitation increase (from NCEP reanalysis data) indicates that there is not a reduction of global net radiation (IR + Albedo) to space which is associated with increased global or tropical - regional rainfall.
where SW denotes net downward shortwave radiation, LW net upward longwave radiation, LH latent heat flux, and SH sensible heat flux I can find these products at http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surfaceflux.html Regarding the latent and sensible fluxes I don't have a problem (since there are only two in the NCEP list), but regarding the others I have several.
In some alternative universe, they define forcing as net down - minus - up flux of radiation after surface temperatures have equilibrated.
When expressed as a flux (a vector), OLR and DLR cancel to produce a net upward radiation flux (ca 390 - 333 = 56 W / m2).
Use it for LW and increased «Forcing» REDUCES net surface IR flux (the vector sum of irradiances), meaning temperature has to rise to keep convection plus radiation constant.
These real photons are captured and quantified by detectors as two fluxes OLR and DLR, not net radiation.
Why doesn't ozzio see that the ground is net warmed by solar radiation and net cooled by thermal radiation and there is an equilibrium when you account for other fluxes too (as in the K&T budget)?
«Because the solar - thermal energy balance of Earth [at the top of the atmosphere (TOA)-RSB- is maintained by radiative processes only, and because all the global net advective energy transports must equal zero, it follows that the global average surface temperature must be determined in full by the radiative fluxes arising from the patterns of temperature and absorption of radiation
Bill Gray has a favorite diagram, taken from a 1985 climate model, showing little nodules in the center with such labels as «thermal inertia» and «net energy balance» and «latent heat flux» and «subsurface heat storage» and «absorbed heat radiation» and so on, and they are emitting arrows that curve and loop in all directions, bumping into yet more jargon, like «soil moisture» and «surface roughness» and «vertical wind» and «meltwater» and «volcanoes.»
«in an isotropic non GHG world, the net would be zero, as the mean conduction flux would equalize, but in our earth it is still nearly zero» if the atmosphere were isothermal at the same temperature as the surface then exactly the downwelling radiation absorbed by the surface would be equal to the radiation of th surface absorbed by the air (or rather by its trace gases) and both numbers would be (1 - 2E3 (t (nu)-RRB--RRB- pi B (nu, T) where t (nu) is the optical thickness, B the Planck function, nu the optical frequency and T the temperature; as the flow from the air absorbed by the surface is equal to the flow from the surface absorbed by the air, the radiative heat transfer is zero between surface and air.
Back radiation can only heat the ocean if the air temperature is warmer than the surface skin temperature (back radiation will contribute to the downward energy flux in all cases, but heat transfer, which is the net energy flow, always goes from hot to cold).
Irannejad et al. (2003) developed a statistical methodology to fit monthly fluxes from a large number of climate models to a simple linear statistical model, depending on factors such as monthly net radiation and surface relative humidity.
Incoming solar radiation and latent heat flux are the two dominant components that control net surface energy fluxes.
Maps of the long - term monthly and annual means of the net surface energy flux together with the four components of the total flux (latent heat flux, sensible heat flux, incoming radiation, and outgoing radiation) for the global oceans are presented.
[1] Total absorbed radiation (TAR), the sum of SNR [shortwave net radiation] and LDR [longwave downward radiation], represents the total radiative energy available to maintain the Earth's surface temperature and to sustain the turbulent (sensible and latent) heat fluxes in the atmosphere.
The measurements had an offset error related to the infrared radiation flux (a net loss, as the instruments involved emitted more IR than they received from clear skies).
The 2008 K&T cartoon gives a NET upward radiation flux from the surface of 33w / m2 with a downward adjustment to water vapour to 76w / m2 and conduction to 16w / m2 but the point holds; that point is more net heat is leaving the surface through methods other than radiation, particularly water; that to me means 2 things; water is a dominant mover of heat compared to CO2 and the sun's 168/166 w / m2 is a far more dominant heater than CO2 backradiatiNET upward radiation flux from the surface of 33w / m2 with a downward adjustment to water vapour to 76w / m2 and conduction to 16w / m2 but the point holds; that point is more net heat is leaving the surface through methods other than radiation, particularly water; that to me means 2 things; water is a dominant mover of heat compared to CO2 and the sun's 168/166 w / m2 is a far more dominant heater than CO2 backradiatinet heat is leaving the surface through methods other than radiation, particularly water; that to me means 2 things; water is a dominant mover of heat compared to CO2 and the sun's 168/166 w / m2 is a far more dominant heater than CO2 backradiation.
The team examined data on carbon - dioxide flux, evapotranspiration, sensible heat, air temperature, net radiation and photosynthetic active radiation from five FLUXNET grassland sites in Canada, the US and Hungary, along with leaf - area index information derived from satellite data.
a b c d e f g h i j k l m n o p q r s t u v w x y z