Sentences with phrase «net radiative forcing changes»

In all cases, however, the net radiative forcing changes for the non-CO2 gases are small after 2100 and negligible after about 2200.

Not exact matches

While a relatively minor part of the overall aerosol mass, changes in the anthropogenic portion of aerosols since 1750 have resulted in a globally averaged net radiative forcing of roughly -1.2 W / m2, in comparison to the overall average CO2 forcing of +1.66 W / m2.
In addition, researchers calculated the changes in the shortwave and longwave and net radiation between the pre-industrial simulation and the present - day simulations to estimate the radiative forcing resulting from the aerosol effects on cirrus clouds.
While the local, seasonal climate forcing by the Milankovitch cycles is large (of the order 30 W / m2), the net forcing provided by Milankovitch is close to zero in the global mean, requiring other radiative terms (like albedo or greenhouse gas anomalies) to force global - mean temperature change.
Gerald Marsh offered this opinion in «A Global Warming Primer» (page 4 - excerpt) «Radiative forcing is defined as the change in net downward radiative flux at the tropopause resulting from any process that acts as an external agent to the climate system; it is generally measured iRadiative forcing is defined as the change in net downward radiative flux at the tropopause resulting from any process that acts as an external agent to the climate system; it is generally measured iradiative flux at the tropopause resulting from any process that acts as an external agent to the climate system; it is generally measured in W / m2.
In fact, all climate models do predict that the change in globally - averaged steady state temperature, at least, is almost exactly proportional to the change in net radiative forcing, indicating a near - linear response of the climate, at least on the broadest scales.
Radiative forcing RF at a level is equal to a decrease in net upward flux (either SW, LW, or both; the greenhouse effect refers to LW forcing) at that given level, due to a change in (optical) properties, while holding temperatures constant.
The system can have a net negative feedback and still change very much provided a radiative forcing from sunlight or CO2 is sufficiently large, although for typical changes in these variables that Earth encounters, one would indeed expect only relatively small climate changes to occur if negative feedbacks did in fact dominate.
Currently, although only 20 % of the accumulated anthropogenic rise in carbon dioxide originates from land use and land cover change (LULCC), 40 % of the net positive radiative forcing from human activities is attributable to LULCC sources (Ward et al 2014).
The effect of band widenning is a reduction in net upward LW flux (this is called the radiative forcing), which is proportional to a change in area under the curve (a graph of flux over the spectrum); the contribution from band widenning is equal to the amount by which the band widens (in units ν) multiplied by - Fνup (CO2).
«Radiative forcing Radiative forcing is the change in the net, downward minus upward, radiative flux (expressed in W m — 2) at the tropopause or top of atmosphere due to a change in an external driver of climate change, such as, for example, a change in the concentration of carbon dioxide or the output of the SuRadiative forcing Radiative forcing is the change in the net, downward minus upward, radiative flux (expressed in W m — 2) at the tropopause or top of atmosphere due to a change in an external driver of climate change, such as, for example, a change in the concentration of carbon dioxide or the output of the SuRadiative forcing is the change in the net, downward minus upward, radiative flux (expressed in W m — 2) at the tropopause or top of atmosphere due to a change in an external driver of climate change, such as, for example, a change in the concentration of carbon dioxide or the output of the Suradiative flux (expressed in W m — 2) at the tropopause or top of atmosphere due to a change in an external driver of climate change, such as, for example, a change in the concentration of carbon dioxide or the output of the Sun.»
The albedo change resulting from the snowline retreat on land is similarly large as the retreat of sea ice, so the combined impact could be well over 2 W / sq m. To put this in context, albedo changes in the Arctic alone could more than double the net radiative forcing resulting from the emissions caused by all people of the world, estimated by the IPCC to be 1.6 W / sq m in 2007 and 2.29 W / sq m in 2013.»
radiative forcing a change in average net radiation at the top of the troposphere resulting from a change in either solar or infrared radiation due to a change in atmospheric greenhouse gases concentrations; perturbance in the balance between incoming solar radiation and outgoing infrared radiation
Yes, the change is incremental, and yes it's difficult to foresee sufficient incremental change to reach a carbon neutral future, but it's a bigger impact than I think your colleague anticipates (disclosure: I didn't read his entire report carefully, but I didn't see anything that looks like a carbon balance or net radiative forcing calculation).
The comparable net change in radiative forcings illustrated in AR4 WG1 Figure 2.23, as used by another GCM, seems to be even higher, at around 1 Wm - 2 between 1861 — 1900 and 1957 — 1994.
A comparison of CO2 and CH4 fluxes from eutrophic reservoirs suggests that eutrophication does little to change the net carbon balance of reservoirs, but greatly increases the atmospheric radiative forcing caused by these systems through the stimulation of CH4 production (figure 3).
Irrespective of what one thinks about aerosol forcing, it would be hard to argue that the rate of net forcing increase and / or over-all radiative imbalance has actually dropped markedly in recent years, so any change in net heat uptake can only be reasonably attributed to a bit of natural variability or observational uncertainty.
Radiative forcing - Radiative forcing is the change in the net, downward minus upward, irradiance (expressed in W m - 2) at the tropopause due to a change in an external driver of climate change, such as, for example, a change in the concentration of carbon dioxide or the output of the Sun.
Rather, Y is the slope coefficient for an (approximately) linear dependence of net radiative balance N, minus the change in forcings Q, on changes deltaT in mean surface temperature.
IPCC AR4 WG1 tells us that the all anthropogenic forcing components except CO2 (aerosols, other GHGs, land use changes, other changes in surface albedo, etc.) have essentially cancelled one another out, so we can use the estimated radiative forcing for CO2 (1.66 W / m ^ 2) to equate with total net anthropogenic forcing (1.6 W / m ^ 2).
This is achieved through the study of three independent records, the net heat flux into the oceans over 5 decades, the sea - level change rate based on tide gauge records over the 20th century, and the sea - surface temperature variations... We find that the total radiative forcing associated with solar cycles variations is about 5 to 7 times larger than just those associated with the TSI variations, thus implying the necessary existence of an amplification mechanism, although without pointing to which one.
The effects of aerosols and landuse changes reduce radiative forcing so that the net forcing of human activities is in the range of 311 to 435 ppm CO2 - eq, with a central estimate of about 375 ppm CO2 - eq.»
They found that changes in atmospheric ionization during the 11 - year solar cycle, and the resulting variations in aerosol formation, produced a globally asymmetric radiative forcing with a net cloud albedo effect of − 0.05 W m − 2.
For example, quarterly anomalies for net top of the atmosphere radiation (28) show no statistically measurable change between 2000 and 2008, which is consistent with the lack of a statistically measurable change in our estimate for radiative forcing between 2000 and 2007 (SI Appendix: Section 2.8).
Radiative forcing: A change in average net radiation at the top of the troposphere (known as the tropopause) because of a change in either incoming solar or exiting infrared radiation.
What greenhouse gases do is reduce the outgoing longwave radiation (at fixed T) and the radiative forcing is a measure of that net irradiance change, in this case defined at the tropopause.
Re 416 Bernd Herd — in climate science, for global climate change, specifically a global (average surface) temperature change in response to a global (typically average net tropopause - level after stratospheric adjustment) radiative forcing (or other heat source — although on Earth those tend not to be so big), where the radiative forcing may be in units of W / m ^ 2, so that equilibrium climate sensitivity is in K * m ^ 2 / W (it is often expressed as K / doubling CO2 as doubling CO2 has a certain amount of radiative forcing for given conditions).
The reason why a 1 / S ^ 2 prior is noninformative is that estimates of climate sensitivity depend on comparing changes in temperature with changes in -LCB- forcing minus the Earth's net radiative balance (or its proxy, ocean heat uptake)-RCB-.
Natural or anthropogenic CO2 in the atmosphere induces a «radiative forcing» ΔF, defined by IPCC (2001: ch.6.1) asa change in net (down minus up) radiant - energy flux at the tropopause in response to a perturbation.
The forcing is calculated as the perturbation to the net radiative flux at the tropopause following a model change such as increased greenhouse gas concentration.
The «forcing» by the way is just a measure of how the net radiative balance of the planet is perturbed by a change in solar irradiance, greenhouse gases, etc..
Looking at the last decade, it is clear that the observed rate of change of upper ocean heat content is a little slower than previously (and below linear extrapolations of the pre-2003 model output), and it remains unclear to what extent that is related to a reduction in net radiative forcing growth (due to the solar cycle, or perhaps larger than expected aerosol forcing growth), or internal variability, model errors, or data processing — arguments have been made for all four, singly and together.
The IPCC defines radiative forcing as «the change in net (down minus up) irradiance (solar plus longwave; in W m — 2) at the tropopause after allowing for stratospheric temperatures to readjust to radiative equilibrium, but with surface and tropospheric temperatures and state held fixed at the unperturbed values».
Radiative Forcing A change in average net radiation (in W m - 2) at the top of the troposphere resulting from a change in either solar or infrared radiation due to a change in atmospheric greenhouse gases concentrations; perturbance in the balance between incoming solar radiation and outgoing infrared radiation.
a b c d e f g h i j k l m n o p q r s t u v w x y z