Sentences with phrase «nonzero value»

Yes, if the layer is thin enough then the amount emitted up and down will be about the same... but the ratio of the difference to the thickness approaches a constant nonzero value.
Just because there are some (very misguided) people in this forum that believe that the CO2 sensitivity is zero doesn't mean any nonzero value «validates» GCMs.
I did however say that any nonzero value would be scientifically significant, which I suggest is more interesting than the blog debate that you are trying to start.
For the nonzero values, we could use Only use a school i if.

Not exact matches

The «average» values were obtained by looking at households reporting nonzero airfare spending over the previous 6 months, and annualizing the number.
Trends as a function of CSD, Saturation: If the temperature varies monotonically over the distance from which most of the radiation reaching that level is emitted, then increasing the CSD will bring the upward and downward fluxes and intensities (at a given angle) toward the same value, reducing the net intensities and fluxes, until eventually they approach zero (or a nonzero saturation value at TOA).
The corresponding working quasilinear wave equation for the barotropic azonal stream function Ψm ′ of the forced waves with m = 6, 7, and 8 (m waves) with nonzero right - hand side (forcing + eddy friction) yields (34) u˜ ∂ ∂ x (∂ 2Ψm ′ ∂ x2 + ∂ 2Ψm ′ ∂ y2) + β˜ ∂ Ψm ′ ∂ x = 2Ω sin ϕ cos2 ϕT˜u˜ ∂ Tm ′ ∂ x − 2Ω sin ϕcos2 ϕHκu˜ ∂ hor, m ∂ x − (kha2 + kzH2)(∂ 2Ψm ′ ∂ x2 + ∂ 2Ψm ′ ∂ y2), [S3] where x = aλ and y = a ln -LSB-(1 + sin ϕ) / cos ϕ] are the coordinates of the Mercator projection of Earth's sphere, with λ as the longitude, H is the characteristic value of the atmospheric density vertical scale, T˜ is a constant reference temperature at the EBL, Tm ′ is the m component of azonal temperature at this level, u˜ = u ¯ / cos ϕ, κ is the ratio of the zonally averaged module of the geostrophic wind at the top of the PBL to that at the EBL (53), hor, m is the m component of the large - scale orography height, and kh and kz are the horizontal and vertical eddy diffusion coefficients.
a b c d e f g h i j k l m n o p q r s t u v w x y z