Sentences with phrase «of vascular endothelial cells»

The primary factor is inflammation and health of the vascular endothelial cells.
Chairs: Jozef Dulak, Jagiellonian University and Shahin Rafii, Weill Cornell Medical College Karen K. Hirschi, Yale School of Medicine Role of vascular endothelial cells in stem cell generation and maintenance Ann Zovein, University of California, San Francisco Cell fate decisions in hemogenic endothelium (Stem Cells I under Cells and Vascular Beds)
A Human Long Non-Coding RNA ALT1 Controls the Cell Cycle of Vascular Endothelial Cells Via ACE2 and Cyclin D1 Pathway.
Researchers suspect that manipulation of vascular endothelial cell migration could be a useful therapeutic approach for those and other conditions.

Not exact matches

So Daniel Anderson at the Massachusetts Institute of Technology exposed human bone marrow stem cells to biodegradable nanoparticles carrying the human gene for vascular endothelial growth factor (VEGF), which attracts blood vessels to injury sites.
And they incorporated into the gel a protein known as vascular endothelial growth factor (VEGF), which encourages the growth of blood vessels into the transplanted cells.
The epithelium's maturation into a villus intestinal epithelium with long finger - like extensions was helped along by co-culturing human intestinal microvascular endothelial cells on the opposite side of the shared matrix - coated porous membrane in the «vascular» channel where they assembled a surrogate blood vessel with a hollow lumen through which feeding medium was flowed.
Due to the lack of oxygen in the cancer cells, VEGF - A (Vascular Endothelial Growth Factor) is formed and this promotes the formation of new blood vessels to supply the tumor.
During the creation of new blood vessels, the vascular endothelial growth factor (VEGF) protein differentiates stem cells into vascular endothelial cells and stimulates them to create new blood vessels.
In addition, when these transcription factors lose their function, terminal differentiation into the vascular endothelium (completion of differentiation) is completely suppressed, and genes that are key to differentiation into vascular endothelial cells as well as transcription factors that maintain the undifferentiated state are adversely induced.
Each of the endothelial cell lines established from the H - 2Kb - tsA58 transgenic mice was capable of generating vascular - like channels on Matrigel within 12 h.
Established cell lines exhibited several inherent endothelial properties, including the expression of constitutive and inducible levels of endothelial cell adhesion molecules E-selectin, intercellular adhesion molecule - 1, and vascular cell adhesion molecule - 1, internalization of acetylated low - density lipoprotein, and formation of loop structures on Matrigel surfaces.
Exchange protein activated by cyclic AMP (Epac)- mediated induction of suppressor of cytokine signaling 3 (SOCS - 3) in vascular endothelial cells.
In keeping with this, recent studies showed that flavanols, a subclass of flavonoids that is richly represented in natural cocoa beans, increase NO production by cultured human vascular endothelial cells (16) and improve endothelium - dependent vasorelaxation (NO - dependent) in finger (2) and brachial (3) arteries of healthy humans.
Isolation of Endothelial Cells and Vascular Smooth Muscle Cells from Internal Mammary Artery Tissue.
The postnatal adipose tissue contains a heterogeneous population of cells which includes adult stem cells (i.e., MSCs), endothelial progenitor cells, leukocytes, endothelial cells, and vascular smooth muscle cells.
A vascular injury model using focal heat - induced activation of endothelial cells.
Endothelial cells play a major role in the development and differentiation of the vascular system.
Phase II study of cediranib (AZD 2171), an inhibitor of the vascular endothelial growth factor receptor, for second - line therapy of small cell lung cancer (NCI # 7097).
Chairs: Rama Natarajan, Beckman Research Institute of City of Hope and Marianne Grant, Beth Israel Deaconess Medical Center Philip Marsden, University of Toronto Epigenetic regulation of endothelial phenotype: the role of the non coding genome Kathleen Martin, Yale School of Medicine Transcriptional and epigenetic regulation in vascular smooth muscle cells
A transcriptome research of its organs revealed its gene signature is highly evolved and adapted for extreme longevity (slow metabolism, improved insulin gene signaling and glucose homeostasis, thus reduced blood glucose, improved cancer genes, improved endothelial function by eNOS (endothelial Nitric Oxide Synthase) meaning improved vascular coronary blood flow, improved microvasculature arterial and heart endothelium function) but more importantly, to answer your question, some whales display low blood glucose hypoglycemia, this affects the quantity and period of proteins / DNA / cell exposure to glucose glycation, glycosylation and glycoxydation reactions.
Mechanotransduction The effects of extracellular matrix stiffening on endothelial cell health Cynthia Reinhart - King, Cornell University The effects of membrane cholesterol and extracellular matrix elasticity on vascular smooth muscle cell mechanics and migration Zhongkui Hong, University of South Dakota
The team identified the connections between rs9349379 and EDN1 by deleting a region of DNA at the SNP in human pluripotent stem cells and then converting these immature cells into endothelial cells and vascular smooth muscle cells.
Other research has shown that oxygen - deprived cells in the retina produce a type of protein called vascular endothelial growth factor (VEGF), which triggers the growth of new blood vessels in the retina.
Vascular endothelial growth factor (VEGF) expressed by neural progenitor cells (NPCs)(cyan) stimulates the growth of blood vessels (red) in the mouse embryonic hindbrain, and provides regulatory factors to promote the self - renewal of neural progenitors.
From these cell based and clinical studies, we have developed important mechanistic ideas such as activation of protein kinase C, the role of vascular endothelial growth factor (VEGF) and selective insulin resistance as some of the basic mechanisms for the pathogenesis of diabetic microvascular and cardiovascular diseases which are now widely studied by multiple laboratories.
The researchers found that, when stimulated by insulin, diabetic fibroblasts produced less of the VEGF (vascular endothelial growth factor) signaling protein, a key player in boosting the growth of blood vessel cells, than normal fibroblasts did.
Susan Amara, USA - «Regulation of transporter function and trafficking by amphetamines, Structure - function relationships in excitatory amino acid transporters (EAATs), Modulation of dopamine transporters (DAT) by GPCRs, Genetics and functional analyses of human trace amine receptors» Tom I. Bonner, USA (Past Core Member)- Genomics, G protein coupled receptors Michel Bouvier, Canada - Molecular Pharmacology of G protein - Coupled Receptors; Molecular mechanisms controlling the selectivity and efficacy of GPCR signalling Thomas Burris, USA - Nuclear Receptor Pharmacology and Drug Discovery William A. Catterall, USA (Past Core Member)- The Molecular Basis of Electrical Excitability Steven Charlton, UK - Molecular Pharmacology and Drug Discovery Moses Chao, USA - Mechanisms of Neurotophin Receptor Signaling Mark Coles, UK - Cellular differentiation, human embryonic stem cells, stromal cells, haematopoietic stem cells, organogenesis, lymphoid microenvironments, develomental immunology Steven L. Colletti, USA Graham L Collingridge, UK Philippe Delerive, France - Metabolic Research (diabetes, obesity, non-alcoholic fatty liver, cardio - vascular diseases, nuclear hormone receptor, GPCRs, kinases) Sir Colin T. Dollery, UK (Founder and Past Core Member) Richard M. Eglen, UK Stephen M. Foord, UK David Gloriam, Denmark - GPCRs, databases, computational drug design, orphan recetpors Gillian Gray, UK Debbie Hay, New Zealand - G protein - coupled receptors, peptide receptors, CGRP, Amylin, Adrenomedullin, Migraine, Diabetes / obesity Allyn C. Howlett, USA Franz Hofmann, Germany - Voltage dependent calcium channels and the positive inotropic effect of beta adrenergic stimulation; cardiovascular function of cGMP protein kinase Yu Huang, Hong Kong - Endothelial and Metabolic Dysfunction, and Novel Biomarkers in Diabetes, Hypertension, Dyslipidemia and Estrogen Deficiency, Endothelium - derived Contracting Factors in the Regulation of Vascular Tone, Adipose Tissue Regulation of Vascular Function in Obesity, Diabetes and Hypertension, Pharmacological Characterization of New Anti-diabetic and Anti-hypertensive Drugs, Hypotensive and antioxidant Actions of Biologically Active Components of Traditional Chinese Herbs and Natural Plants including Polypehnols and Ginsenosides Adriaan P. IJzerman, The Netherlands - G protein - coupled receptors; allosteric modulation; binding kinetics Michael F Jarvis, USA - Purines and Purinergic Receptors and Voltage-gated ion channel (sodium and calcium) pharmacology Pain mechanisms Research Reproducibility Bong - Kiun Kaang, Korea - G protein - coupled receptors; Glutamate receptors; Neuropsychiatric disorders Eamonn Kelly, Prof, UK - Molecular Pharmacology of G protein - coupled receptors, in particular opioid receptors, regulation of GPCRs by kinasis and arrestins Terry Kenakin, USA - Drug receptor pharmacodynamics, receptor theory Janos Kiss, Hungary - Neurodegenerative disorders, Alzheimer's disease Stefan Knapp, Germany - Rational design of highly selective inhibitors (so call chemical probes) targeting protein kinases as well as protein interaction inhibitors of the bromodomain family Andrew Knight, UK Chris Langmead, Australia - Drug discovery, GPCRs, neuroscience and analytical pharmacology Vincent Laudet, France (Past Core Member)- Evolution of the Nuclear Receptor / Ligand couple Margaret R. MacLean, UK - Serotonin, endothelin, estrogen, microRNAs and pulmonary hyperten Neil Marrion, UK - Calcium - activated potassium channels, neuronal excitability Fiona Marshall, UK - GPCR molecular pharmacology, structure and drug discovery Alistair Mathie, UK - Ion channel structure, function and regulation, pain and the nervous system Ian McGrath, UK - Adrenoceptors; autonomic transmission; vascular pharmacology Graeme Milligan, UK - Structure, function and regulation of G protein - coupled receptors Richard Neubig, USA (Past Core Member)- G protein signaling; academic drug discovery Stefan Offermanns, Germany - G protein - coupled receptors, vascular / metabolic signaling Richard Olsen, USA - Structure and function of GABA - A receptors; mode of action of GABAergic drugs including general anesthetics and ethanol Jean - Philippe Pin, France (Past Core Member)- GPCR - mGLuR - GABAB - structure function relationship - pharmacology - biophysics Helgi Schiöth, Sweden David Searls, USA - Bioinformatics Graeme Semple, USA - GPCR Medicinal Chemistry Patrick M. Sexton, Australia - G protein - coupled receptors Roland Staal, USA - Microglia and neuroinflammation in neuropathic pain and neurological disorders Bart Staels, France - Nuclear receptor signaling in metabolic and cardiovascular diseases Katerina Tiligada, Greece - Immunopharmacology, histamine, histamine receptors, hypersensitivity, drug allergy, inflammation Georg Terstappen, Germany - Drug discovery for neurodegenerative diseases with a focus on AD Mary Vore, USA - Activity and regulation of expression and function of the ATP - binding cassette (ABC) tranvascular diseases, nuclear hormone receptor, GPCRs, kinases) Sir Colin T. Dollery, UK (Founder and Past Core Member) Richard M. Eglen, UK Stephen M. Foord, UK David Gloriam, Denmark - GPCRs, databases, computational drug design, orphan recetpors Gillian Gray, UK Debbie Hay, New Zealand - G protein - coupled receptors, peptide receptors, CGRP, Amylin, Adrenomedullin, Migraine, Diabetes / obesity Allyn C. Howlett, USA Franz Hofmann, Germany - Voltage dependent calcium channels and the positive inotropic effect of beta adrenergic stimulation; cardiovascular function of cGMP protein kinase Yu Huang, Hong Kong - Endothelial and Metabolic Dysfunction, and Novel Biomarkers in Diabetes, Hypertension, Dyslipidemia and Estrogen Deficiency, Endothelium - derived Contracting Factors in the Regulation of Vascular Tone, Adipose Tissue Regulation of Vascular Function in Obesity, Diabetes and Hypertension, Pharmacological Characterization of New Anti-diabetic and Anti-hypertensive Drugs, Hypotensive and antioxidant Actions of Biologically Active Components of Traditional Chinese Herbs and Natural Plants including Polypehnols and Ginsenosides Adriaan P. IJzerman, The Netherlands - G protein - coupled receptors; allosteric modulation; binding kinetics Michael F Jarvis, USA - Purines and Purinergic Receptors and Voltage-gated ion channel (sodium and calcium) pharmacology Pain mechanisms Research Reproducibility Bong - Kiun Kaang, Korea - G protein - coupled receptors; Glutamate receptors; Neuropsychiatric disorders Eamonn Kelly, Prof, UK - Molecular Pharmacology of G protein - coupled receptors, in particular opioid receptors, regulation of GPCRs by kinasis and arrestins Terry Kenakin, USA - Drug receptor pharmacodynamics, receptor theory Janos Kiss, Hungary - Neurodegenerative disorders, Alzheimer's disease Stefan Knapp, Germany - Rational design of highly selective inhibitors (so call chemical probes) targeting protein kinases as well as protein interaction inhibitors of the bromodomain family Andrew Knight, UK Chris Langmead, Australia - Drug discovery, GPCRs, neuroscience and analytical pharmacology Vincent Laudet, France (Past Core Member)- Evolution of the Nuclear Receptor / Ligand couple Margaret R. MacLean, UK - Serotonin, endothelin, estrogen, microRNAs and pulmonary hyperten Neil Marrion, UK - Calcium - activated potassium channels, neuronal excitability Fiona Marshall, UK - GPCR molecular pharmacology, structure and drug discovery Alistair Mathie, UK - Ion channel structure, function and regulation, pain and the nervous system Ian McGrath, UK - Adrenoceptors; autonomic transmission; vascular pharmacology Graeme Milligan, UK - Structure, function and regulation of G protein - coupled receptors Richard Neubig, USA (Past Core Member)- G protein signaling; academic drug discovery Stefan Offermanns, Germany - G protein - coupled receptors, vascular / metabolic signaling Richard Olsen, USA - Structure and function of GABA - A receptors; mode of action of GABAergic drugs including general anesthetics and ethanol Jean - Philippe Pin, France (Past Core Member)- GPCR - mGLuR - GABAB - structure function relationship - pharmacology - biophysics Helgi Schiöth, Sweden David Searls, USA - Bioinformatics Graeme Semple, USA - GPCR Medicinal Chemistry Patrick M. Sexton, Australia - G protein - coupled receptors Roland Staal, USA - Microglia and neuroinflammation in neuropathic pain and neurological disorders Bart Staels, France - Nuclear receptor signaling in metabolic and cardiovascular diseases Katerina Tiligada, Greece - Immunopharmacology, histamine, histamine receptors, hypersensitivity, drug allergy, inflammation Georg Terstappen, Germany - Drug discovery for neurodegenerative diseases with a focus on AD Mary Vore, USA - Activity and regulation of expression and function of the ATP - binding cassette (ABC) tranVascular Tone, Adipose Tissue Regulation of Vascular Function in Obesity, Diabetes and Hypertension, Pharmacological Characterization of New Anti-diabetic and Anti-hypertensive Drugs, Hypotensive and antioxidant Actions of Biologically Active Components of Traditional Chinese Herbs and Natural Plants including Polypehnols and Ginsenosides Adriaan P. IJzerman, The Netherlands - G protein - coupled receptors; allosteric modulation; binding kinetics Michael F Jarvis, USA - Purines and Purinergic Receptors and Voltage-gated ion channel (sodium and calcium) pharmacology Pain mechanisms Research Reproducibility Bong - Kiun Kaang, Korea - G protein - coupled receptors; Glutamate receptors; Neuropsychiatric disorders Eamonn Kelly, Prof, UK - Molecular Pharmacology of G protein - coupled receptors, in particular opioid receptors, regulation of GPCRs by kinasis and arrestins Terry Kenakin, USA - Drug receptor pharmacodynamics, receptor theory Janos Kiss, Hungary - Neurodegenerative disorders, Alzheimer's disease Stefan Knapp, Germany - Rational design of highly selective inhibitors (so call chemical probes) targeting protein kinases as well as protein interaction inhibitors of the bromodomain family Andrew Knight, UK Chris Langmead, Australia - Drug discovery, GPCRs, neuroscience and analytical pharmacology Vincent Laudet, France (Past Core Member)- Evolution of the Nuclear Receptor / Ligand couple Margaret R. MacLean, UK - Serotonin, endothelin, estrogen, microRNAs and pulmonary hyperten Neil Marrion, UK - Calcium - activated potassium channels, neuronal excitability Fiona Marshall, UK - GPCR molecular pharmacology, structure and drug discovery Alistair Mathie, UK - Ion channel structure, function and regulation, pain and the nervous system Ian McGrath, UK - Adrenoceptors; autonomic transmission; vascular pharmacology Graeme Milligan, UK - Structure, function and regulation of G protein - coupled receptors Richard Neubig, USA (Past Core Member)- G protein signaling; academic drug discovery Stefan Offermanns, Germany - G protein - coupled receptors, vascular / metabolic signaling Richard Olsen, USA - Structure and function of GABA - A receptors; mode of action of GABAergic drugs including general anesthetics and ethanol Jean - Philippe Pin, France (Past Core Member)- GPCR - mGLuR - GABAB - structure function relationship - pharmacology - biophysics Helgi Schiöth, Sweden David Searls, USA - Bioinformatics Graeme Semple, USA - GPCR Medicinal Chemistry Patrick M. Sexton, Australia - G protein - coupled receptors Roland Staal, USA - Microglia and neuroinflammation in neuropathic pain and neurological disorders Bart Staels, France - Nuclear receptor signaling in metabolic and cardiovascular diseases Katerina Tiligada, Greece - Immunopharmacology, histamine, histamine receptors, hypersensitivity, drug allergy, inflammation Georg Terstappen, Germany - Drug discovery for neurodegenerative diseases with a focus on AD Mary Vore, USA - Activity and regulation of expression and function of the ATP - binding cassette (ABC) tranVascular Function in Obesity, Diabetes and Hypertension, Pharmacological Characterization of New Anti-diabetic and Anti-hypertensive Drugs, Hypotensive and antioxidant Actions of Biologically Active Components of Traditional Chinese Herbs and Natural Plants including Polypehnols and Ginsenosides Adriaan P. IJzerman, The Netherlands - G protein - coupled receptors; allosteric modulation; binding kinetics Michael F Jarvis, USA - Purines and Purinergic Receptors and Voltage-gated ion channel (sodium and calcium) pharmacology Pain mechanisms Research Reproducibility Bong - Kiun Kaang, Korea - G protein - coupled receptors; Glutamate receptors; Neuropsychiatric disorders Eamonn Kelly, Prof, UK - Molecular Pharmacology of G protein - coupled receptors, in particular opioid receptors, regulation of GPCRs by kinasis and arrestins Terry Kenakin, USA - Drug receptor pharmacodynamics, receptor theory Janos Kiss, Hungary - Neurodegenerative disorders, Alzheimer's disease Stefan Knapp, Germany - Rational design of highly selective inhibitors (so call chemical probes) targeting protein kinases as well as protein interaction inhibitors of the bromodomain family Andrew Knight, UK Chris Langmead, Australia - Drug discovery, GPCRs, neuroscience and analytical pharmacology Vincent Laudet, France (Past Core Member)- Evolution of the Nuclear Receptor / Ligand couple Margaret R. MacLean, UK - Serotonin, endothelin, estrogen, microRNAs and pulmonary hyperten Neil Marrion, UK - Calcium - activated potassium channels, neuronal excitability Fiona Marshall, UK - GPCR molecular pharmacology, structure and drug discovery Alistair Mathie, UK - Ion channel structure, function and regulation, pain and the nervous system Ian McGrath, UK - Adrenoceptors; autonomic transmission; vascular pharmacology Graeme Milligan, UK - Structure, function and regulation of G protein - coupled receptors Richard Neubig, USA (Past Core Member)- G protein signaling; academic drug discovery Stefan Offermanns, Germany - G protein - coupled receptors, vascular / metabolic signaling Richard Olsen, USA - Structure and function of GABA - A receptors; mode of action of GABAergic drugs including general anesthetics and ethanol Jean - Philippe Pin, France (Past Core Member)- GPCR - mGLuR - GABAB - structure function relationship - pharmacology - biophysics Helgi Schiöth, Sweden David Searls, USA - Bioinformatics Graeme Semple, USA - GPCR Medicinal Chemistry Patrick M. Sexton, Australia - G protein - coupled receptors Roland Staal, USA - Microglia and neuroinflammation in neuropathic pain and neurological disorders Bart Staels, France - Nuclear receptor signaling in metabolic and cardiovascular diseases Katerina Tiligada, Greece - Immunopharmacology, histamine, histamine receptors, hypersensitivity, drug allergy, inflammation Georg Terstappen, Germany - Drug discovery for neurodegenerative diseases with a focus on AD Mary Vore, USA - Activity and regulation of expression and function of the ATP - binding cassette (ABC) tranvascular pharmacology Graeme Milligan, UK - Structure, function and regulation of G protein - coupled receptors Richard Neubig, USA (Past Core Member)- G protein signaling; academic drug discovery Stefan Offermanns, Germany - G protein - coupled receptors, vascular / metabolic signaling Richard Olsen, USA - Structure and function of GABA - A receptors; mode of action of GABAergic drugs including general anesthetics and ethanol Jean - Philippe Pin, France (Past Core Member)- GPCR - mGLuR - GABAB - structure function relationship - pharmacology - biophysics Helgi Schiöth, Sweden David Searls, USA - Bioinformatics Graeme Semple, USA - GPCR Medicinal Chemistry Patrick M. Sexton, Australia - G protein - coupled receptors Roland Staal, USA - Microglia and neuroinflammation in neuropathic pain and neurological disorders Bart Staels, France - Nuclear receptor signaling in metabolic and cardiovascular diseases Katerina Tiligada, Greece - Immunopharmacology, histamine, histamine receptors, hypersensitivity, drug allergy, inflammation Georg Terstappen, Germany - Drug discovery for neurodegenerative diseases with a focus on AD Mary Vore, USA - Activity and regulation of expression and function of the ATP - binding cassette (ABC) tranvascular / metabolic signaling Richard Olsen, USA - Structure and function of GABA - A receptors; mode of action of GABAergic drugs including general anesthetics and ethanol Jean - Philippe Pin, France (Past Core Member)- GPCR - mGLuR - GABAB - structure function relationship - pharmacology - biophysics Helgi Schiöth, Sweden David Searls, USA - Bioinformatics Graeme Semple, USA - GPCR Medicinal Chemistry Patrick M. Sexton, Australia - G protein - coupled receptors Roland Staal, USA - Microglia and neuroinflammation in neuropathic pain and neurological disorders Bart Staels, France - Nuclear receptor signaling in metabolic and cardiovascular diseases Katerina Tiligada, Greece - Immunopharmacology, histamine, histamine receptors, hypersensitivity, drug allergy, inflammation Georg Terstappen, Germany - Drug discovery for neurodegenerative diseases with a focus on AD Mary Vore, USA - Activity and regulation of expression and function of the ATP - binding cassette (ABC) transporters
Modulation of T cell and B cell interactions with vascular endothelial cells by antibodies, complement, and platelets
Paul Vanhoutte, China - Importance of endothelial cells in the control of the underlying vascular smooth muscle in vascular health and disease, and to highlight the complexity of that regulation Robert R. Ruffolo, USA
«Flavonoids and Vitamin E Reduce the Release of the Angiogenic Peptide Vascular Endothelial Growth Factor from Human Tumor Cells».
We therefore conducted a cross-sectional analysis to investigate the relations between magnesium intake and plasma concentrations of inflammatory and endothelial biomarkers, including CRP, IL - 6, soluble TNF - α receptor 2 (sTNF - R2), E-selectin, soluble intercellular adhesion molecule 1 (sICAM - 1), and soluble vascular cell adhesion molecule 1 (sVCAM - 1) in apparently healthy women.
EDR activity involves the release of endothelial nitric oxide (NO) release and subsequent increase in cyclic guanosine monophosphate (GMP) levels in the vascular smooth muscle cells ultimately increasing vasodilation and blood flow.
Of note, in systemic and pulmonary vascular endothelial cells, smooth muscle cells, and fibroblasts, 2 - CH30 E2 exerts stronger anti-mitotic effects than estradiol itself.
GH therapy has been shown to decrease fat mass, increase lean body mass, increase bone mineral density, reduce both LDL and total cholesterol, reduce carotid - artery intimal media thickness, increase the number and function of endothelial progenitor cells (which repair the vascular wall), increase exercise tolerance, and dramatically improve overall quality of life.8 9 10
At the same time, the protein Vascular Endothelial Growth Factor (VEGF) stimulates blood supply for the damaged tissue, Fibroblast Growth Factor - 2 (FGF - 2) stimulates the damaged cells to grow and reproduce themselves, Transforming Growth Factor - beta (TGF - beta) stimulates cartilage to grow, and Stem Cell Factor (SCF) stimulates your native inactive stem cells to become activated and assist in the repair of the damaged tissue.
Ishikado, A. Sono, Y. Matsumoto, M. Robida - Stubbs, S. Okuno, A. Goto, M. King, G. Blackwell, K. Makinoa, T. Willow bark extract increases antioxidant enzymes and reduces oxidative stress through activation of Nrf2 in vascular endothelial cells and Caenorhabditis elegans.
Researchers report that curcumin reduces all pro-inflammatory molecules in cartilage cells and in membranes that line the joints, among them tumor necrosis factor — which destroys joint cartilage — and vascular endothelial growth factor, which promotes excessive growth of blood vessels in inflamed joints.
Linoleic acid induces proinflammatory events in vascular endothelial cells via activation of PI3K / Akt and ERK1 / 2 signaling
Lin, L., et al. «Protective effect of gypenosides against oxidative stress in phagocytes, vascular endothelial cells and liver microsomes,» Cancer Biotherapy, 8 (3): 263 - 72, 1993.
Vascular endothelial cells play an important role in the regulation of vascular activity by producing vasoactive substances sucVascular endothelial cells play an important role in the regulation of vascular activity by producing vasoactive substances sucvascular activity by producing vasoactive substances such as NO.
Bartonella is a gram - negative, aerobic bacilli that infects primarily the erythrocytes and vascular endothelial cells of its hosts.
One of these growth factors is vascular endothelial growth factor - A or VEGF, which acts by binding specific receptors on the hemangiosarcoma cells.
It is an incurable tumor of cells that line blood vessels, called vascular endothelial cells.
a b c d e f g h i j k l m n o p q r s t u v w x y z