Sentences with phrase «on global circulation»

Previously, Kelly was a Postdoctoral Fellow and Research Associate at the University of Washington and the University of Victoria in British Columbia, Canada where she studied the role of the changing Arctic sea ice cover on global circulation, weather, and climate using a hierarchy of numerical global climate models.
It is a convective layer on global circulation time scales, just like the boundary layer is convective on daily time scales, so its lapse rate is defined by the processes by which air ascends and descends, namely convection.
Climate change is typically defined as a global problem as it's flowed from the science, which is stronger on global circulation and averages than localised impacts.
In addition, tropical phenomena such as El Niño — Southern Oscillation have a strong influence on the global circulation.
Previously, Kelly was a Postdoctoral Fellow and Research Associate at the University of Washington and the University of Victoria in British Columbia, Canada where she studied the role of the changing Arctic sea ice cover on global circulation, weather, and climate using a hierarchy of numerical global climate models.

Not exact matches

On the other hand, the Fed's insistence on draining dollars out of global circulation would be facilitated by any European endeavours to enhance the status of Euro as a reserve petro - currencOn the other hand, the Fed's insistence on draining dollars out of global circulation would be facilitated by any European endeavours to enhance the status of Euro as a reserve petro - currencon draining dollars out of global circulation would be facilitated by any European endeavours to enhance the status of Euro as a reserve petro - currency.
«But if, as global circulation models suggest, drying continues, our results provide evidence that this could degrade the Amazonian forest canopies, which would have cascading effects on global carbon and climate dynamics.»
The timing of such uplift is important in helping scientists to understand how mountains form, how they erode and what impact this may have on global atmospheric circulation patterns and climate.
The Tibetan Plateau in China experiences the strongest monsoon system on Earth, with powerful winds — and accompanying intense rains in the summer months — caused by a complex system of global air circulation patterns and differences in surface temperatures between land and oceans.
The poles are on the front lines of climate change — melting ice, thawing permafrost, warming temperatures — but they are also at the forefront of weather patterns, global oceanic circulation and the marine food chain.
The temperatures in the central Pacific have the biggest impact on the global atmospheric circulation, and therefore the biggest impacts on global weather, says Timmerman, who has been warning that this El Niño is likely to be a record - breaker.
Gross says that the most important processes affecting day length are changes in the weather, especially unusual variations in the strength and direction of the winds, which bring on alterations in the global circulation of the atmosphere and ocean.
The new findings, based on detailed computer simulations using the best available global circulation models, are described this week in the journal Science Advances, in a paper by MIT professor of environmental engineering Elfatih Eltahir, MIT Research Scientist Eun Soon Im, and Professor Jeremy Pal at Loyola Marymount University in Los Angeles.
Their research, published in Nature Climate Change on June 29, is the first attempt to examine and document these changes in the air - sea heat exchange in the region — brought about by global warming — and to consider its possible impact on oceanic circulation, including the climatologically important Atlantic Meridional Overturning Ccirculation, including the climatologically important Atlantic Meridional Overturning CirculationCirculation.
An unprecedented analysis of North Pacific ocean circulation over the past 1.2 million years has found that sea ice formation in coastal regions is a key driver of deep ocean circulation, influencing climate on regional and global scales.
He believes that no one has thought of combining the two theories before because it's not an intuitive idea to look at how the effects of changing patterns of ocean circulation, which occur on time scales of thousands of years, would effect global silicate weathering, which in turn controls global climate on time scales of 100s of thousands of years.
A new study has found that turbulent mixing in the deep waters of the Southern Ocean, which has a profound effect on global ocean circulation and climate, varies with the strength of surface eddies — the ocean equivalent of storms in the atmosphere — and possibly also wind speeds.
Previous studies based on global climate models indicated that the overturning circulation in the North Pacific and North Atlantic responded in opposite ways to major shifts in global climate.
And what we see is both how complex climate changes can be and how profound an effect changing patterns of ocean circulation can have on global climate states, if looked at on a geological time scale.»
Although the rising average global surface temperature is an indicator of the degree of disruption that we have imposed on the global climate system, what's actually happening involves changes in circulation patterns, changes in precipitation patterns, and changes in extremes.
g (acceleration due to gravity) G (gravitational constant) G star G1.9 +0.3 gabbro Gabor, Dennis (1900 — 1979) Gabriel's Horn Gacrux (Gamma Crucis) gadolinium Gagarin, Yuri Alexeyevich (1934 — 1968) Gagarin Cosmonaut Training Center GAIA Gaia Hypothesis galactic anticenter galactic bulge galactic center Galactic Club galactic coordinates galactic disk galactic empire galactic equator galactic habitable zone galactic halo galactic magnetic field galactic noise galactic plane galactic rotation galactose Galatea GALAXIES galaxy galaxy cannibalism galaxy classification galaxy formation galaxy interaction galaxy merger Galaxy, The Galaxy satellite series Gale Crater Galen (c. AD 129 — c. 216) galena GALEX (Galaxy Evolution Explorer) Galilean satellites Galilean telescope Galileo (Galilei, Galileo)(1564 — 1642) Galileo (spacecraft) Galileo Europa Mission (GEM) Galileo satellite navigation system gall gall bladder Galle, Johann Gottfried (1812 — 1910) gallic acid gallium gallon gallstone Galois, Évariste (1811 — 1832) Galois theory Galton, Francis (1822 — 1911) Galvani, Luigi (1737 — 1798) galvanizing galvanometer game game theory GAMES AND PUZZLES gamete gametophyte Gamma (Soviet orbiting telescope) Gamma Cassiopeiae Gamma Cassiopeiae star gamma function gamma globulin gamma rays Gamma Velorum gamma - ray burst gamma - ray satellites Gamow, George (1904 — 1968) ganglion gangrene Ganswindt, Hermann (1856 — 1934) Ganymede «garbage theory», of the origin of life Gardner, Martin (1914 — 2010) Garneau, Marc (1949 ---RRB- garnet Garnet Star (Mu Cephei) Garnet Star Nebula (IC 1396) garnierite Garriott, Owen K. (1930 ---RRB- Garuda gas gas chromatography gas constant gas giant gas laws gas - bounded nebula gaseous nebula gaseous propellant gaseous - propellant rocket engine gasoline Gaspra (minor planet 951) Gassendi, Pierre (1592 — 1655) gastric juice gastrin gastrocnemius gastroenteritis gastrointestinal tract gastropod gastrulation Gatewood, George D. (1940 ---RRB- Gauer - Henry reflex gauge boson gauge theory gauss (unit) Gauss, Carl Friedrich (1777 — 1855) Gaussian distribution Gay - Lussac, Joseph Louis (1778 — 1850) GCOM (Global Change Observing Mission) Geber (c. 720 — 815) gegenschein Geiger, Hans Wilhelm (1882 — 1945) Geiger - Müller counter Giessler tube gel gelatin Gelfond's theorem Gell - Mann, Murray (1929 ---RRB- GEM «gemination,» of martian canals Geminga Gemini (constellation) Gemini Observatory Gemini Project Gemini - Titan II gemstone gene gene expression gene mapping gene pool gene therapy gene transfer General Catalogue of Variable Stars (GCVS) general precession general theory of relativity generation ship generator Genesis (inflatable orbiting module) Genesis (sample return probe) genetic code genetic counseling genetic disorder genetic drift genetic engineering genetic marker genetic material genetic pool genetic recombination genetics GENETICS AND HEREDITY Geneva Extrasolar Planet Search Program genome genome, interstellar transmission of genotype gentian violet genus geoboard geode geodesic geodesy geodesy satellites geodetic precession Geographos (minor planet 1620) geography GEOGRAPHY Geo - IK geologic time geology GEOLOGY AND PLANETARY SCIENCE geomagnetic field geomagnetic storm geometric mean geometric sequence geometry GEOMETRY geometry puzzles geophysics GEOS (Geodetic Earth Orbiting Satellite) Geosat geostationary orbit geosynchronous orbit geosynchronous / geostationary transfer orbit (GTO) geosyncline Geotail (satellite) geotropism germ germ cells Germain, Sophie (1776 — 1831) German Rocket Society germanium germination Gesner, Konrad von (1516 — 1565) gestation Get Off the Earth puzzle Gettier problem geyser g - force GFO (Geosat Follow - On) GFZ - 1 (GeoForschungsZentrum) ghost crater Ghost Head Nebula (NGC 2080) ghost image Ghost of Jupiter (NGC 3242) Giacconi, Riccardo (1931 ---RRB- Giacobini - Zinner, Comet (Comet 21P /) Giaever, Ivar (1929 ---RRB- giant branch Giant Magellan Telescope giant molecular cloud giant planet giant star Giant's Causeway Giauque, William Francis (1895 — 1982) gibberellins Gibbs, Josiah Willard (1839 — 1903) Gibbs free energy Gibson, Edward G. (1936 ---RRB- Gilbert, William (1544 — 1603) gilbert (unit) Gilbreath's conjecture gilding gill gill (unit) Gilruth, Robert R. (1913 — 2000) gilsonite gimbal Ginga ginkgo Giotto (ESA Halley probe) GIRD (Gruppa Isutcheniya Reaktivnovo Dvisheniya) girder glacial drift glacial groove glacier gland Glaser, Donald Arthur (1926 — 2013) Glashow, Sheldon (1932 ---RRB- glass GLAST (Gamma - ray Large Area Space Telescope) Glauber, Johann Rudolf (1607 — 1670) glaucoma glauconite Glenn, John Herschel, Jr. (1921 ---RRB- Glenn Research Center Glennan, T (homas) Keith (1905 — 1995) glenoid cavity glia glial cell glider Gliese 229B Gliese 581 Gliese 67 (HD 10307, HIP 7918) Gliese 710 (HD 168442, HIP 89825) Gliese 86 Gliese 876 Gliese Catalogue glioma glissette glitch Global Astrometric Interferometer for Astrophysics (GAIA) Global Oscillation Network Group (GONG) Globalstar globe Globigerina globular cluster globular proteins globule globulin globus pallidus GLOMR (Global Low Orbiting Message Relay) GLONASS (Global Navigation Satellite System) glossopharyngeal nerve Gloster E. 28/39 glottis glow - worm glucagon glucocorticoid glucose glucoside gluon Glushko, Valentin Petrovitch (1908 — 1989) glutamic acid glutamine gluten gluteus maximus glycerol glycine glycogen glycol glycolysis glycoprotein glycosidic bond glycosuria glyoxysome GMS (Geosynchronous Meteorological Satellite) GMT (Greenwich Mean Time) Gnathostomata gneiss Go Go, No - go goblet cell GOCE (Gravity field and steady - state Ocean Circulation Explorer) God Goddard, Robert Hutchings (1882 — 1945) Goddard Institute for Space Studies Goddard Space Flight Center Gödel, Kurt (1906 — 1978) Gödel universe Godwin, Francis (1562 — 1633) GOES (Geostationary Operational Environmental Satellite) goethite goiter gold Gold, Thomas (1920 — 2004) Goldbach conjecture golden ratio (phi) Goldin, Daniel Saul (1940 ---RRB- gold - leaf electroscope Goldstone Tracking Facility Golgi, Camillo (1844 — 1926) Golgi apparatus Golomb, Solomon W. (1932 — 2016) golygon GOMS (Geostationary Operational Meteorological Satellite) gonad gonadotrophin - releasing hormone gonadotrophins Gondwanaland Gonets goniatite goniometer gonorrhea Goodricke, John (1764 — 1786) googol Gordian Knot Gordon, Richard Francis, Jr. (1929 — 2017) Gore, John Ellard (1845 — 1910) gorge gorilla Gorizont Gott loop Goudsmit, Samuel Abraham (1902 — 1978) Gould, Benjamin Apthorp (1824 — 1896) Gould, Stephen Jay (1941 — 2002) Gould Belt gout governor GPS (Global Positioning System) Graaf, Regnier de (1641 — 1673) Graafian follicle GRAB graben GRACE (Gravity Recovery and Climate Experiment) graceful graph gradient Graham, Ronald (1935 ---RRB- Graham, Thomas (1805 — 1869) Graham's law of diffusion Graham's number GRAIL (Gravity Recovery and Interior Laboratory) grain (cereal) grain (unit) gram gram - atom Gramme, Zénobe Théophile (1826 — 1901) gramophone Gram's stain Gran Telescopio Canarias (GTC) Granat Grand Tour grand unified theory (GUT) Grandfather Paradox Granit, Ragnar Arthur (1900 — 1991) granite granulation granule granulocyte graph graph theory graphene graphite GRAPHS AND GRAPH THEORY graptolite grass grassland gravel graveyard orbit gravimeter gravimetric analysis Gravitational Biology Facility gravitational collapse gravitational constant (G) gravitational instability gravitational lens gravitational life gravitational lock gravitational microlensing GRAVITATIONAL PHYSICS gravitational slingshot effect gravitational waves graviton gravity gravity gradient gravity gradient stabilization Gravity Probe A Gravity Probe B gravity - assist gray (Gy) gray goo gray matter grazing - incidence telescope Great Annihilator Great Attractor great circle Great Comets Great Hercules Cluster (M13, NGC 6205) Great Monad Great Observatories Great Red Spot Great Rift (in Milky Way) Great Rift Valley Great Square of Pegasus Great Wall greater omentum greatest elongation Green, George (1793 — 1841) Green, Nathaniel E. Green, Thomas Hill (1836 — 1882) green algae Green Bank Green Bank conference (1961) Green Bank Telescope green flash greenhouse effect greenhouse gases Green's theorem Greg, Percy (1836 — 1889) Gregorian calendar Grelling's paradox Griffith, George (1857 — 1906) Griffith Observatory Grignard, François Auguste Victor (1871 — 1935) Grignard reagent grike Grimaldi, Francesco Maria (1618 — 1663) Grissom, Virgil (1926 — 1967) grit gritstone Groom Lake Groombridge 34 Groombridge Catalogue gross ground, electrical ground state ground - track group group theory GROUPS AND GROUP THEORY growing season growth growth hormone growth hormone - releasing hormone growth plate Grudge, Project Gruithuisen, Franz von Paula (1774 — 1852) Grus (constellation) Grus Quartet (NGC 7552, NGC 7582, NGC 7590, and NGC 7599) GSLV (Geosynchronous Satellite Launch Vehicle) g - suit G - type asteroid Guericke, Otto von (1602 — 1686) guanine Guiana Space Centre guidance, inertial Guide Star Catalog (GSC) guided missile guided missiles, postwar development Guillaume, Charles Édouard (1861 — 1938) Gulf Stream (ocean current) Gulfstream (jet plane) Gullstrand, Allvar (1862 — 1930) gum Gum Nebula gun metal gunpowder Gurwin Gusev Crater gut Gutenberg, Johann (c. 1400 — 1468) Guy, Richard Kenneth (1916 ---RRB- guyot Guzman Prize gymnosperm gynecology gynoecium gypsum gyrocompass gyrofrequency gyropilot gyroscope gyrostabilizer Gyulbudagian's Nebula (HH215)
Most of the focus has been on the global mean temperature trend in the models and observations (it would certainly be worthwhile to look at some more subtle metrics — rainfall, latitudinal temperature gradients, Hadley circulation etc. but that's beyond the scope of this post).
Scientists at Pacific Northwest National Laboratory showed that global climate models are not accurately depicting the true depth and strength of tropical clouds that have a strong hold on the general circulation of atmospheric heat and the global water balance.
To derive the climate projections for this assessment, we employed 20 general circulation models to consider two scenarios of global carbon emissions: one where atmospheric greenhouse gases are stabilized by the end of the century and the other where it grows on its current path (the stabilization [RCP4.5] and business - as - usual [RCP8.5] emission scenarios, respectively).
Broecker's articulation of likely effects of freshwater outbursts in the North Atlantic on ocean circulation and global climate (Broecker, 1990; Broecker et al., 1990) spurred quantitative studies with idealized ocean models (Stocker and Wright, 1991) and global atmosphere — ocean models (Manabe and Stouffer, 1995; Rahmstorf 1995, 1996).
Saenko, O.A., and W.J. Merryfield, 2005: On the effect of topographically - enhanced mixing on the global ocean circulatioOn the effect of topographically - enhanced mixing on the global ocean circulatioon the global ocean circulation.
Given the impacts of adding 120 meters equivalent of global mean sea level equivalent of freshwater to the system are unlikely to be negligible on ocean circulation and biological activity.
Climate scientists would say in response that changes in ocean circulation can't sustain a net change in global temperature over such a long period (ENSO for example might raise or lower global temperature on a timescale of one or two years, but over decades there would be roughly zero net change).
That this is the note on which the film ends lends a conclusive element to what in its early stages seems to be a more free - form narrative careening between depictions of place and circulation which is notable in its exclusion of the global north as a central point of reference.
Includes detailed information on the characteristics of the atmosphere, factors affecting wind, global atmospheric circulation systems, global pressure patterns and Hadley, Ferrel and Polar cells.
Meanwhile, a concurrent, metaphorical understanding of the term attends to the unearthing of immaterial resources by addressing the field of research - based practice at large, its inherent interdisciplinarity and its impact on the circulation of information within a global marketplace.
Most recently appointed Executive Director at Artpace, Basha is known for «conceiving and producing innovative curatorial projects that focus on the creation and circulation of contemporary art in both the local and global arena.»
Its starting point are works by artists Alice Creischer about the circulation of global commodities and by Sudhir Patwardhan who records the impact of the textile industry on Mumbai.
Combining found and repurposed materials, the works on view attest to notions of desire, circulation and flux, from protective spaces of retreat to global economies of exchange.
Our estimate is based primarily on our review of a series of calculations with three - dimensional models of the global atmospheric circulation, which is summarized in Chapter 4.
On the 500 Mio year time scale you have to consider continental shifts which have important impacts on climate (e.g. completely different global ocean circulationOn the 500 Mio year time scale you have to consider continental shifts which have important impacts on climate (e.g. completely different global ocean circulationon climate (e.g. completely different global ocean circulation).
On global vs. local, how about the global model prediction of a deepening and widening of the tropical atmospheric circulation, which leads to the Hadley cell expansion and the projection of the dry zones expanding polewards.
As the authors point out, even if the whole story comes down to precipitation changes which favor ablation, the persistence of these conditions throughout the 20th century still might be an indirect effect of global warming, via the remote effect of sea surface temperature on atmospheric circulation.
Such researchers then proceed to rely on Global / Regional / Local Circulation Models in order to make projections of modern SLR even when these same models have not been able to reproduce numerous examples of abrupt SLR found in the paleo - record, thus clearly indicating that current models are not capable of identifying the modern risk of abrupt SLR.
While global concentrations are far below that, in local areas of high carbon pollution or poor air circulation (e.g. indoors, or on a highway), it's not hard to reach already.
As far as this historic period is concerned, the reconstruction of past temperatures based on deep boreholes in deep permafrost is one of the best past temperature proxies we have (for the global regions with permafrost — polar regions and mountainous regions)-- as a signal of average temperatures it's even more accurate than historic direct measurements of the air temperature, since the earth's upper crust acts as a near perfect conservator of past temperatures — given that no water circulation takes place, which is precisely the case in permafrost where by definition the water is frozen.
This would have an impact on global atmospheric circulation and thus global climate.
~ Our study confirms many changes seen in upper Arctic Ocean circulation in the 1990s were mostly decadal in nature, rather than trends caused by global warming,» / / www.jpl.nasa.gov/news/news.cfm?release=2007-131 [ANDY REVKIN comments: That's precisely what I wrote in the Science Times feature on Arctic ice in September (link is in the post).
Changes in the Arctic affect the rest of the world, not only in obvious ways (such as the Arctic's contribution to sea - level rise), but through the Arctic's role in the global climate system, its influence on ocean circulation, and its impacts on mid-latitude weather.
The much slower thermohaline circulation mixes cold abyssal water on a time scale of centuries — the global ocean turnover time estimated from bottom current velocities is estimated to be on the order of half a millennium
This is the first part of a planned mini-series of 3 posts on tropical climate, circulation, and oceanic response in conjunction with a global warming.
There is no question that the changes going on are global in scope and the Walker circulation linking the Pacific and Atlantic plays an important role, but I have to be very very skeptical to say the Atlantic is the driver.
Most of the focus has been on the global mean temperature trend in the models and observations (it would certainly be worthwhile to look at some more subtle metrics — rainfall, latitudinal temperature gradients, Hadley circulation etc. but that's beyond the scope of this post).
«Mercado et al. use the HadGEM2 - A general circulation model to simulate the effect of late twentieth century «global dimming» and associated increases in the diffuse radiation fraction on global carbon storage.»
In the rekognition of the uncertainties, the IPCC Good - Practice - Guidance - Paper on using climate model results offers some wise advice (first bullet point under section 3.5 on p. 10): the local climate change scenarios should be based on (i) historical change, (ii) process change (e.g. changes in the driving circulation), (iii) global climate change projected by GCMs, and (iv) downscaled projected change.
a b c d e f g h i j k l m n o p q r s t u v w x y z