Sentences with phrase «over the global ocean from»

Here the adjustment is determined by (1) calculating the collocated ship - buoy SST difference over the global ocean from 1982 - 2012, (2) calculating the global areal weighted average of ship - buoy SST difference, (3) applying a 12 - month running filter to the global averaged ship - buoy SST difference, and (4) evaluating the mean difference and its STD of ship - buoy SSTs based on the data from 1990 to 2012 (the data are noisy before 1990 due to sparse buoy observations).

Not exact matches

Thanks to a cooperative of family farmers, primarily from Canada and the U.S., Ocean Spray's cranberries reach consumers in over 100 countries across the world — including China, through a Tmall Global storefront.
Over the course of coming decades, though, trade wind speed is expected to decrease from global warming, Thunell says, and the result will be less phytoplankton production at the surface and less oxygen utilization at depth, causing a concomitant increase in the ocean's oxygen content.
At least over the oceans, the pre-industrial cloud conditions would have been considerably different from those of today; this implies that the aerosols we have been adding to the atmosphere may have had a significant effect on global patterns of cloud formation and rain.
Global mean temperatures averaged over land and ocean surfaces, from three different estimates, each of which has been independently adjusted for various homogeneity issues, are consistent within uncertainty estimates over the period 1901 to 2005 and show similar rates of increase in recent decades.
Total column water vapour has increased over the global oceans by 1.2 ± 0.3 % per decade from 1988 to 2004, consistent in pattern and amount with changes in SST and a fairly constant relative humidity.
Temperature changes relative to the corresponding average for 1901 - 1950 (°C) from decade to decade from 1906 to 2005 over the Earth's continents, as well as the entire globe, global land area and the global ocean (lower graphs).
Over the period 1984 — 2006 the global changes are 0.28 °C in SST and − 9.1 W m − 2 in Q, giving an effective air — sea coupling coefficient of − 32 W m − 2 °C − 1... [D] iminished ocean cooling due to vertical ocean processes played an important role in sustaining the observed positive trend in global SST from 1984 through 2006, despite the decrease in global surface heat flux.
The estimated increase of observed global ocean heat content (over the depth range from 0 to 3000 meters) between the 1950s and 1990s is at least one order of magnitude larger than the increase in heat content of any other component.
Given how much yelling takes place on the Internet, talk radio, and elsewhere over short - term cool and hot spells in relation to global warming, I wanted to find out whether anyone had generated a decent decades - long graph of global temperature trends accounting for, and erasing, the short - term up - and - down flickers from the cyclical shift in the tropical Pacific Ocean known as the El Niño — Southern Oscillation, or ENSO, cycle.
Since the CMIP5 models used by the IPCC on average adequately reproduce observed global warming in the last two and a half decades of the 20th century without any contribution from multidecadal ocean variability, it follows that those models (whose mean TCR is slightly over 1.8 °C) must be substantially too sensitive.
But the same paucity of ice, which Arctic climate specialists say is driven increasingly by global greenhouse warming, has made it easy for an enormous bulk carrier, the MV Nordic Barents, to achieve a new feat of northern navigation — carrying more than 40,000 tons of concentrated iron ore from Kirkenes, Norway, along the Northern Sea Route over Russia and, as of yesterday, out of the Arctic Ocean on its way to a Chinese port.
It is certainly true that a very small temperature bias that is not random from instrument to instrument, but instead is the same over a large number of profiles can create systematic error in global estimates of ocean heat content.
From a technology perspective, satellites were just beginning to collect vessel positions over the open ocean, and the «global coverage» was spotty.
http://www.springerlink.com/content/lm0024kv72t3841w/ «The simulated magnitude of hydrological changes over land are much larger when compared to changes over oceans in the recent marine cloud albedo enhancement study since the radiative forcing over land needed (− 8.2 W m − 2) to counter global mean radiative forcing from a doubling of CO2 (3.3 W m − 2) is approximately twice the forcing needed over the oceans (− 4.2 W m − 2).
Albedo from medium / low level clouds warms or cools the ocean surface by increasing or decreasing over time across the global surface.
The HadCRUT4 dataset, compiled from many thousands of temperature measurements taken across the globe, from all continents and all oceans, is used to estimate global temperature, shows that 2017 was 0.99 ± 0.1 °C above pre-industrial levels, taken as the average over the period 1850 - 1900, and 0.38 ± 0.1 °C above the 1981 - 2010 average.
There is also a natural variability of the climate system (about a zero reference point) that produces El Nino and La Nina effects arising from changes in ocean circulation patterns that can make the global temperature increase or decrease, over and above the global warming due to CO2.
The variation of net global sensible and latent heat flux from the ocean, being impacted greatly by ENSO, the PDO, and the AMO, plays the dominant role in the fluctuations in total energy output measured at the TOA over short - term time frames.
Limited validations for the results include comparisons of 1) the PERSIANN - derived diurnal cycle of rainfall at Rondonia, Brazil, with that derived from the Tropical Ocean Global Atmosphere Coupled Oceanï ¿ 1/2 Atmosphere Response Experiment (TOGA COARE) radar data; 2) the PERSIANN diurnal cycle of rainfall over the western Pacific Ocean with that derived from the data of the optical rain gauges mounted on the TOGA - moored buoys; and 3) the monthly accumulations of rainfall samples from the orbital TMI and PR surface rainfall with the accumulations of concurrent PERSIANN estimates.
The Sea Surface Temperature Climate Change Initiative (SST CCI) project will accurately map the surface temperature of the global oceans over the period 1991 to 2010, using observations from many satellites.
Although global warming appears to have taken a breather over the past decade and a half, the leveling off of average global temperatures is likely just a temporary phenomenon that is due to other climate influences from the sun's radiance level to natural temperature oscillations in the Pacific ocean.
In the present study, satellite altimetric height and historically available in situ temperature data were combined using the method developed by Willis et al. [2003], to produce global estimates of upper ocean heat content, thermosteric expansion, and temperature variability over the 10.5 - year period from the beginning of 1993 through mid-2003...
J. T. Fasullo, R. S. Nerem & B. Hamlington Scientific Reports 6, Article number: 31245 (2016) doi: 10.1038 / srep31245 Download Citation Climate and Earth system modellingProjection and prediction Received: 13 April 2016 Accepted: 15 July 2016 Published online: 10 August 2016 Erratum: 10 November 2016 Updated online 10 November 2016 Abstract Global mean sea level rise estimated from satellite altimetry provides a strong constraint on climate variability and change and is expected to accelerate as the rates of both ocean warming and cryospheric mass loss increase over time.
Therefore, it is harder to separate natural variability from anthro signal (in this case, shifting of heat around, as versus a global, ocean + atmosphere heating over the past 50 years).
From the article: A new study released Monday found that warming temperatures in Pacific Ocean waters off the coast of North America over the past century closely followed natural changes in the wind, not increases in greenhouse gases related to global warming.
Abstract: «Global mean sea level rise estimated from satellite altimetry provides a strong constraint on climate variability and change and is expected to accelerate as the rates of both ocean warming and cryospheric mass loss increase over time.
Because the oceans cover some 71 % of the Earth's surface and are capable of retaining heat around a thousand times that of the atmosphere, the oceans are where most of the energy from global warming is going - 93.4 % over recent decades.
New gridded daily wind fields from Metop / ASCAT scatterometer retrievals are produced in near real - time over global ocean with a spatial resolution of 0.25 °.
C: increase in atmospheric CO2 from pre-industrial to present is anthropogenic (D / A) S: best guess for likely climate sensitivity (NUM) s: 2 - sigma range of S (NUM) a: ocean acidification will be a problem (D / A) L: expected sea level rise by 2100 in cm (all contributions)(NUM) B: climate change will be beneficial (D / A) R: CO2 emissions need to be reduced drastically by 2050 (D / A) T: technical advances will take care of any problems (D / A) r: the 20th century global temperature record is reliable (D / A) H: over the last 1000 years global temperature was hockey stick shaped (D / A) D: data has been intentionally distorted by scientist to support the idea of anthropogenic climate change (D / A) g: the CRU - mails are important for the science (D / A) G: the CRU - mails are important otherwise (D / A)
The fact this is seemingly not fully recognized — or here integrated — by Curry goes to the same reason Curry does not recognize why the so called «pause» is a fiction, why the «slowing» of the «rate» of increase in average ambient global land and ocean surface air temperatures over a shorter term period from the larger spike beyond the longer term mean of the 90s is also meaningless in terms of the basic issue, and why the average ambient increase in global air temperatures over such a short term is by far the least important empirical indicia of the issue.
The IPCC tells us that Over the period 1961 to 2003, global ocean temperature has risen by 0.1 °C from the surface to a depth of 700 m.
On a global scale, this warming trend implies that the ocean has gained heat from the atmosphere over the last 50 to 70 years.
The standard deviation of the monthly MSU 2R anomalies has a much more zonally symmetric structure (Fig. 4 and Fig. 5) so that relative to the surface there is a much larger contribution from the northern oceans and a generally smaller contribution over land and near the equator to the hemispheric and global means.
Over the next 3 years the Ocean Colour Climate Change Initiative project aims to: Develop and validate algorithms to meet the Ocean Colour GCOS ECV requirements for consistent, stable, error - characterized global satellite data products from multi-sensor data archives; Produce and validate, within an R&D context, the most complete and consistent possible time series of multi-sensor global satellite data products for climate research and modelling; Optimize the impact of MERIS data on climate data records; Generate complete specifications for an operational production system; Strengthen inter-disciplinary cooperation between international Earth observation, climate research and modelling communities, in pursuit of scientific excellence.
«In our mor recent global model simulations the ocean heat - uptake is slower than previously estimated, the ocean uptake of carbon is weaker, feedbacks from the land system as temperature rises are stronger, cumulative emissions of greenhouse gases over the century are higher, and offsetting cooling from aerosol emissions is lower.
The CO2 doubling response from CM2.6, over 70 - 80 years, shows that upper - ocean (0 - 300 m) temperature in the Northwest Atlantic Shelf warms at a rate nearly twice as fast as the coarser models and nearly three times faster than the global average.
The main improvements with respect to V2 version flux products (Bentamy et al, 2008) are related to the improvements of the specific air humidity estimation from radiometer measurements, to the assessment of the surface winds retrieved from QuikSCAT scatterometers, and to the use of the new objective method allowing the calculation of flux analyses over the global oceans.
(2) the «Sea Surface» temperatures, which are averaged over the global ice - free oceans (60N to 60S), from the AMSR - E instrument on Aqua.
(1) there is established scientific concern over warming of the climate system based upon evidence from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea level;
Consistent with the global transfer of excess heat from the atmosphere to the ocean, and the difference between warming over land and ocean, there is some discontinuity between the plotted means of the lower atmosphere and the upper ocean.
Since «there's an over two orders of magnitude (~ 120) difference between the amount of energy needed to add a litre to the ocean from melting ice (~ 334KJ)[and] thermal expansion of sea water (~ 40,000 KJ)», this means that sea - level rise, often offered as a «proxy» for «global warming», is actually not important.
Some examples from energy balance model calculations indicate that: (1) solar variability has a near - global response, with the amplitude of response slightly larger over land; (2) volcanism has a proportionately larger amplitude of response over land than over ocean; and (3) the most oft - cited mode of internal variability, changes in the North Atlantic thermohaline circulation, has a hemispheric asymmetry in response.
Although we focus on a hypothesized CR - cloud connection, we note that it is difficult to separate changes in the CR flux from accompanying variations in solar irradiance and the solar wind, for which numerous causal links to climate have also been proposed, including: the influence of UV spectral irradiance on stratospheric heating and dynamic stratosphere - troposphere links (Haigh 1996); UV irradiance and radiative damage to phytoplankton influencing the release of volatile precursor compounds which form sulphate aerosols over ocean environments (Kniveton et al. 2003); an amplification of total solar irradiance (TSI) variations by the addition of energy in cloud - free regions enhancing tropospheric circulation features (Meehl et al. 2008; Roy & Haigh 2010); numerous solar - related influences (including solar wind inputs) to the properties of the global electric circuit (GEC) and associated microphysical cloud changes (Tinsley 2008).
In general, the pattern of change in return values for 20 - year extreme temperature events from an equilibrium simulation for doubled CO2 with a global atmospheric model coupled to a non-dynamic slab ocean shows moderate increases over oceans and larger increases over land masses (Zwiers and Kharin, 1998; Figure 9.29).
The global warming century trend that was observed from 1906 to 2005 was 0.74 °C (with a 90 % uncertainty range of 0.56 °C to 0.92 °C), with more warming occurring in the Northern over Southern Hemispheres, and more over land compared to oceans.
Global temperatures usually are described in terms of the surface air temperature anomaly, the deviation of the temperature at each site from a mean of many years that is averaged over the whole world, both land and oceans.
It states that «global warming, poorly planned coastal development and other threats over which humans have some control are weakening natural defenses ranging from mangrove swamps to coral reefs that help keep the oceans at bay.»
O'Dell, C. W., Wentz, F. J. & Bennartz, R. Cloud liquid water path from satellite - based passive microwave observations: a new climatology over the global oceans.
A new research by NASA has revealed that extra heat from greenhouse gases were trapped in the Indian and Pacific oceans in recent years and this could likely be the cause of the so - called pause in global warming that was observed over the past decade.
a b c d e f g h i j k l m n o p q r s t u v w x y z