Sentences with phrase «pronounced ice loss»

The plan was to make ground observations that could link to the satellite data showing unexpectedly pronounced ice loss from the area.

Not exact matches

Recent ice loss was most pronounced in the Chukchi Sea, northwest of Alaska.
Lead author Dr Malcolm McMillan from the University of Leeds said: «We find that ice losses continue to be most pronounced along the fast - flowing ice streams of the Amundsen Sea sector, with thinning rates of between 4 and 8 metres per year near to the grounding lines of the Pine Island, Thwaites and Smith Glaciers.»
And if ice loss continues to accelerate in the warming Arctic, this effect may only become more pronounced in the future.
Since 1979, winter sea ice extent has decreased 3.2 percent per decade (the loss is much more pronounced in summer at a rate of 13.4 percent per decade).
There are, however, caveats: (1) multidecadal fluctuations in Arctic — subarctic climate and sea ice appear most pronounced in the Atlantic sector, such that the pan-Arctic signal may be substantially smaller [e.g., Polyakov et al., 2003; Mahajan et al., 2011]; (2) the sea - ice records synthesized here represent primarily the cold season (winter — spring), whereas the satellite record clearly shows losses primarily in summer, suggesting that other processes and feedback are important; (3) observations show that while recent sea - ice losses in winter are most pronounced in the Greenland and Barents Seas, the largest reductions in summer are remote from the Atlantic, e.g., Beaufort, Chukchi, and Siberian seas (National Snow and Ice Data Center, 2012, http://nsidc.org/Arcticseaicenews/); and (4) the recent reductions in sea ice should not be considered merely the latest in a sequence of AMOrelated multidecadal fluctuations but rather the first one to be superposed upon an anthropogenic GHG warming background signal that is emerging strongly in the Arctic [Kaufmann et al., 2009; Serreze et al., 200ice appear most pronounced in the Atlantic sector, such that the pan-Arctic signal may be substantially smaller [e.g., Polyakov et al., 2003; Mahajan et al., 2011]; (2) the sea - ice records synthesized here represent primarily the cold season (winter — spring), whereas the satellite record clearly shows losses primarily in summer, suggesting that other processes and feedback are important; (3) observations show that while recent sea - ice losses in winter are most pronounced in the Greenland and Barents Seas, the largest reductions in summer are remote from the Atlantic, e.g., Beaufort, Chukchi, and Siberian seas (National Snow and Ice Data Center, 2012, http://nsidc.org/Arcticseaicenews/); and (4) the recent reductions in sea ice should not be considered merely the latest in a sequence of AMOrelated multidecadal fluctuations but rather the first one to be superposed upon an anthropogenic GHG warming background signal that is emerging strongly in the Arctic [Kaufmann et al., 2009; Serreze et al., 200ice records synthesized here represent primarily the cold season (winter — spring), whereas the satellite record clearly shows losses primarily in summer, suggesting that other processes and feedback are important; (3) observations show that while recent sea - ice losses in winter are most pronounced in the Greenland and Barents Seas, the largest reductions in summer are remote from the Atlantic, e.g., Beaufort, Chukchi, and Siberian seas (National Snow and Ice Data Center, 2012, http://nsidc.org/Arcticseaicenews/); and (4) the recent reductions in sea ice should not be considered merely the latest in a sequence of AMOrelated multidecadal fluctuations but rather the first one to be superposed upon an anthropogenic GHG warming background signal that is emerging strongly in the Arctic [Kaufmann et al., 2009; Serreze et al., 200ice losses in winter are most pronounced in the Greenland and Barents Seas, the largest reductions in summer are remote from the Atlantic, e.g., Beaufort, Chukchi, and Siberian seas (National Snow and Ice Data Center, 2012, http://nsidc.org/Arcticseaicenews/); and (4) the recent reductions in sea ice should not be considered merely the latest in a sequence of AMOrelated multidecadal fluctuations but rather the first one to be superposed upon an anthropogenic GHG warming background signal that is emerging strongly in the Arctic [Kaufmann et al., 2009; Serreze et al., 200Ice Data Center, 2012, http://nsidc.org/Arcticseaicenews/); and (4) the recent reductions in sea ice should not be considered merely the latest in a sequence of AMOrelated multidecadal fluctuations but rather the first one to be superposed upon an anthropogenic GHG warming background signal that is emerging strongly in the Arctic [Kaufmann et al., 2009; Serreze et al., 200ice should not be considered merely the latest in a sequence of AMOrelated multidecadal fluctuations but rather the first one to be superposed upon an anthropogenic GHG warming background signal that is emerging strongly in the Arctic [Kaufmann et al., 2009; Serreze et al., 2009].
The ongoing loss of ice in a region that is on average not wamer in the latter part of 60 years (1941 - 2000) seems like a good reminder that it does not take a constant yeaer on year increase to cause pronounced natural response over large areas.
In 2002, the Larsen B ice shelf collapsed; in 2003, the World Glacial Monitoring Service reported that «The recent increase in the rates of ice loss over reduced glacier surface areas as compared with earlier losses related to larger surface areas (cf. the thorough revision of available data by Dyurgerov, 2002) becomes even more pronounced and leaves no doubt about the accelerating change in climatic conditions.»
a b c d e f g h i j k l m n o p q r s t u v w x y z