Sentences with phrase «sea ice feedback processes»

Several ocean - air - sea ice feedback processes may be operating (Meredith and King 2005; Hanna 1996), though it has been difficult to pin down their relative roles in the observational studies (King 1994; Jacobs and Comiso 1997).

Not exact matches

Understanding and evaluating sea ice feedbacks is complicated by the strong coupling to polar cloud processes and ocean heat and freshwater transport.
It is not that the polar regions are amplifying the warming «going on» at lower latitudes, it is that any warming going on AT THE POLES is amplified through inherent positive feedback processes AT THE POLES, and specifically this is primarily the ice - albedo positive feedback process whereby more open water leads to more warming leads to more open water, etc. *** «Climate model simulations have shown that ice albedo feedbacks associated with variations in snow and sea - ice coverage are a key factor in positive feedback mechanisms which amplify climate change at high northern latitudes...»
Section 8.6 discusses the various feedbacks that operate in the atmosphere - land surface - sea ice system to determine climate sensitivity, and Section 8.3.2 discusses some processes that are important for ocean heat uptake (and hence transient climate response).
MacKinnon says the lack of sea ice changes the dynamics of that process by enabling the ocean to absorb more heat, creating a positive - feedback loop that begets more rapid sea ice melting.
• Representation of climate processes in models, especially feedbacks associated with clouds, oceans, sea ice and vegetation, in order to improve projections of rates and regional patterns of climate change.
There are, however, caveats: (1) multidecadal fluctuations in Arctic — subarctic climate and sea ice appear most pronounced in the Atlantic sector, such that the pan-Arctic signal may be substantially smaller [e.g., Polyakov et al., 2003; Mahajan et al., 2011]; (2) the sea - ice records synthesized here represent primarily the cold season (winter — spring), whereas the satellite record clearly shows losses primarily in summer, suggesting that other processes and feedback are important; (3) observations show that while recent sea - ice losses in winter are most pronounced in the Greenland and Barents Seas, the largest reductions in summer are remote from the Atlantic, e.g., Beaufort, Chukchi, and Siberian seas (National Snow and Ice Data Center, 2012, http://nsidc.org/Arcticseaicenews/); and (4) the recent reductions in sea ice should not be considered merely the latest in a sequence of AMOrelated multidecadal fluctuations but rather the first one to be superposed upon an anthropogenic GHG warming background signal that is emerging strongly in the Arctic [Kaufmann et al., 2009; Serreze et al., 200ice appear most pronounced in the Atlantic sector, such that the pan-Arctic signal may be substantially smaller [e.g., Polyakov et al., 2003; Mahajan et al., 2011]; (2) the sea - ice records synthesized here represent primarily the cold season (winter — spring), whereas the satellite record clearly shows losses primarily in summer, suggesting that other processes and feedback are important; (3) observations show that while recent sea - ice losses in winter are most pronounced in the Greenland and Barents Seas, the largest reductions in summer are remote from the Atlantic, e.g., Beaufort, Chukchi, and Siberian seas (National Snow and Ice Data Center, 2012, http://nsidc.org/Arcticseaicenews/); and (4) the recent reductions in sea ice should not be considered merely the latest in a sequence of AMOrelated multidecadal fluctuations but rather the first one to be superposed upon an anthropogenic GHG warming background signal that is emerging strongly in the Arctic [Kaufmann et al., 2009; Serreze et al., 200ice records synthesized here represent primarily the cold season (winter — spring), whereas the satellite record clearly shows losses primarily in summer, suggesting that other processes and feedback are important; (3) observations show that while recent sea - ice losses in winter are most pronounced in the Greenland and Barents Seas, the largest reductions in summer are remote from the Atlantic, e.g., Beaufort, Chukchi, and Siberian seas (National Snow and Ice Data Center, 2012, http://nsidc.org/Arcticseaicenews/); and (4) the recent reductions in sea ice should not be considered merely the latest in a sequence of AMOrelated multidecadal fluctuations but rather the first one to be superposed upon an anthropogenic GHG warming background signal that is emerging strongly in the Arctic [Kaufmann et al., 2009; Serreze et al., 200ice losses in winter are most pronounced in the Greenland and Barents Seas, the largest reductions in summer are remote from the Atlantic, e.g., Beaufort, Chukchi, and Siberian seas (National Snow and Ice Data Center, 2012, http://nsidc.org/Arcticseaicenews/); and (4) the recent reductions in sea ice should not be considered merely the latest in a sequence of AMOrelated multidecadal fluctuations but rather the first one to be superposed upon an anthropogenic GHG warming background signal that is emerging strongly in the Arctic [Kaufmann et al., 2009; Serreze et al., 20Seas, the largest reductions in summer are remote from the Atlantic, e.g., Beaufort, Chukchi, and Siberian seas (National Snow and Ice Data Center, 2012, http://nsidc.org/Arcticseaicenews/); and (4) the recent reductions in sea ice should not be considered merely the latest in a sequence of AMOrelated multidecadal fluctuations but rather the first one to be superposed upon an anthropogenic GHG warming background signal that is emerging strongly in the Arctic [Kaufmann et al., 2009; Serreze et al., 20seas (National Snow and Ice Data Center, 2012, http://nsidc.org/Arcticseaicenews/); and (4) the recent reductions in sea ice should not be considered merely the latest in a sequence of AMOrelated multidecadal fluctuations but rather the first one to be superposed upon an anthropogenic GHG warming background signal that is emerging strongly in the Arctic [Kaufmann et al., 2009; Serreze et al., 200Ice Data Center, 2012, http://nsidc.org/Arcticseaicenews/); and (4) the recent reductions in sea ice should not be considered merely the latest in a sequence of AMOrelated multidecadal fluctuations but rather the first one to be superposed upon an anthropogenic GHG warming background signal that is emerging strongly in the Arctic [Kaufmann et al., 2009; Serreze et al., 200ice should not be considered merely the latest in a sequence of AMOrelated multidecadal fluctuations but rather the first one to be superposed upon an anthropogenic GHG warming background signal that is emerging strongly in the Arctic [Kaufmann et al., 2009; Serreze et al., 2009].
You don't need to go into the details about carbon emissions or chemical processes or quantities of global ice loss or sea level elevations or ocean acidification or the potential feedback loop of tundra methane releases, although there is plenty of available information on all of them.
The approach to the Sea Ice Outlook is a modified Delphi Method (i.e., using questionnaire responses from a panel of indendent experts) that: (1) samples independent expert opinion and rationale on an issue, (2) communicates the results, and (3) iterates on the process with feedback from the expert participants.
Based on the understanding of both the physical processes that control key climate feedbacks (see Section 8.6.3), and also the origin of inter-model differences in the simulation of feedbacks (see Section 8.6.2), the following climate characteristics appear to be particularly important: (i) for the water vapour and lapse rate feedbacks, the response of upper - tropospheric RH and lapse rate to interannual or decadal changes in climate; (ii) for cloud feedbacks, the response of boundary - layer clouds and anvil clouds to a change in surface or atmospheric conditions and the change in cloud radiative properties associated with a change in extratropical synoptic weather systems; (iii) for snow albedo feedbacks, the relationship between surface air temperature and snow melt over northern land areas during spring and (iv) for sea ice feedbacks, the simulation of sea ice thickness.
We also obtain an empirical estimate of f = 2 - 4 for the fast feedback processes (water vapor, clouds, sea ice) operating on 10 - 100 year time scales by comparing the cooling due to slow or specified changes (land ice, CO2, vegetation) to the total cooling at 18K.
In light of trends showing a likely 3 °C or more global temperature rise by the end of this century (a figure that could become much higher if all feedback processes, such as changes of sea ice and water vapor, are taken into account) that could result in sea level rises ranging from 20 to 59 cm (again a conservative estimation), Hansen believes it is critical for scientists in the field to speak out about the consequences and rebuke the spin offered by pundits who «have denigrated suggestions that business - as - usual greenhouse gas emissions may cause a sea level rise of the order of meters.»
a b c d e f g h i j k l m n o p q r s t u v w x y z