Sentences with phrase «studied galaxies in clusters»

«In contrast to the well - studied galaxies in clusters — the «cities» of the universe — we know relatively little about the properties of galaxies in voids.»

Not exact matches

A newly released image from NASA Hubble telescope reveals that a huge cluster of galaxies called Abell 370, has an array of galaxies guarding it and is useful in studying far - flung galaxies by its gravitational lensing property.
In a 2015 study, Pieter van Dokkum of Yale University and colleagues announced they had unearthed 47 never - before - seen, Milky Way - sized yet extremely diffuse (spread out, so relatively dim) galaxies in the Coma Cluster of galaxies, among the most studied in astronomIn a 2015 study, Pieter van Dokkum of Yale University and colleagues announced they had unearthed 47 never - before - seen, Milky Way - sized yet extremely diffuse (spread out, so relatively dim) galaxies in the Coma Cluster of galaxies, among the most studied in astronomin the Coma Cluster of galaxies, among the most studied in astronomin astronomy.
«The Hubble data revealing the ghost light are important steps forward in understanding the evolution of galaxy clusters,» said Ignacio Trujillo of the Instituto de Astrofísica de Canarias (IAC), La Laguna, Tenerife, Spain, one of the researchers involved in this study of Abell 2744.
Although none of these stars came from the far side, the technique seems to work because the results agreed with previous studies that mapped star clusters in the visible section of the galaxy.
Whatever the something else is, it does not show up in our studies of galaxies and galaxy clusters.
Perhaps only when we study huge agglomerations of matter, in galaxies or clusters of galaxies, will we spot the elusive phenomena that can take us beyond Einstein and Newton.
«We asked ourselves how the sensitive ultra-diffuse galaxies could survive at all in an environment as unsettled as a galaxy cluster,» explains Carolin Wittmann, first author of the study and PhD student at the Institute for Astronomical Computing (ARI) at the ZAH.
By studying the distribution of the x-ray emitting gas and the individual galaxies in the cluster, the team also concluded that El Gordo is actually two clusters in collision.
The study led by Donahue looked at far - ultraviolet light from a variety of massive elliptical galaxies found in the Cluster Lensing And Supernova Survey with Hubble (CLASH), which contains elliptical galaxies in the distant universe.
Stars can grow no bigger than 150 times as massive as our sun, according to a study of the dazzling «Arches» cluster near the center of our galaxy — shown here in an artist's impression.
A new study based on observations with the Hubble Space Telescope has shown that the most massive galaxies in the universe, which are found in clusters like this, have been aligned with the distribution of neighboring galaxies for at least 10 billion years.
In a 2008 study, Haiman and his colleagues hypothesized that radiation from a massive neighboring galaxy could split molecular hydrogen into atomic hydrogen and cause the nascent black hole and its host galaxy to collapse rather than spawn new clusters of stars.
Harvard University astrophysicist Charlie Conroy and colleagues studied these two particular clusters because they are far from the galactic centers of the Milky way and Andromeda galaxies; that distance has shielded them from cosmic turbulence and kept them — and any putative dark matter — in a relatively pristine state.
By gathering energetic X-rays, it will study the physics of black holes, the evolution of galaxy clusters, and the formation of heavy elements — crucial for life — in exploding stars.
Astronomers are studying the combined image in an attempt to decipher the sequence of galaxy - cluster collisions.
Researchers were able to study the quasar (seen above) in detail, thanks to the magnifying effect of a gravitational lens — a massive galaxy cluster in front of it — that caused it to appear brighter than it would have otherwise.
By studying far - flung galaxy clusters, astronomers are able to look back in time at the state of those objects millions or even billions of years ago, when the light just now reaching us was emitted.
Astronomers using observations from the NASA / ESA Hubble Space Telescope and NASA's Chandra X-ray Observatory have studied how dark matter in clusters of galaxies behaves when the clusters collide.
[4] To find out where the dark matter was located in the cluster the researchers studied the light from galaxies behind the cluster whose light had been magnified and distorted by the mass in the cluster.
Andrew Gould of the Institute for Advanced Study in Princeton, New Jersey, analysed a small cluster of galaxies called Eridanus A.
The newly discovered black hole is in a galaxy, NGC 1600, in the opposite part of the sky from the Coma Cluster in a relative desert, said the leader of the discovery team, Chung - Pei Ma, a UC Berkeley professor of astronomy and head of the MASSIVE Survey, a study of the most massive galaxies and black holes in the local universe with the goal of understanding how they form and grow supermassive.
«I've been studying globular clusters in galaxies for a long time, and this is the first time I've ever seen this,» said Michael Beasley, also of the Instituto de Astrofisica de Canarias.
«While studying the supernova, we realised that the galaxy in which it exploded is already known to be a galaxy that is being lensed by the cluster,» explains Steve Rodney, co-author, from the University of South Carolina.
The team compared the positions of these galaxies with the location of a cluster of young galaxies 11.5 billion light - years from Earth in SSA22 which had been studied in visible light by the Subaru Telescope, operated by the National Astronomical Observatory of Japan (NAOJ).
The galaxy was detected as part of the Frontier Fields program, an ambitious three - year effort, begun in 2013, that teams Hubble with NASA's other Great Observatories — the Spitzer Space Telescope and the Chandra X-ray Observatory — to probe the early universe by studying large galaxy clusters.
Bertolami and his colleagues studied a galaxy cluster known as Abell cluster A586 to see if dark matter and normal matter fall in the same way under gravity.
The two newly studied galaxies reside in the Virgo cluster, which is a dangerous neighborhood.
g (acceleration due to gravity) G (gravitational constant) G star G1.9 +0.3 gabbro Gabor, Dennis (1900 — 1979) Gabriel's Horn Gacrux (Gamma Crucis) gadolinium Gagarin, Yuri Alexeyevich (1934 — 1968) Gagarin Cosmonaut Training Center GAIA Gaia Hypothesis galactic anticenter galactic bulge galactic center Galactic Club galactic coordinates galactic disk galactic empire galactic equator galactic habitable zone galactic halo galactic magnetic field galactic noise galactic plane galactic rotation galactose Galatea GALAXIES galaxy galaxy cannibalism galaxy classification galaxy formation galaxy interaction galaxy merger Galaxy, The Galaxy satellite series Gale Crater Galen (c. AD 129 — c. 216) galena GALEX (Galaxy Evolution Explorer) Galilean satellites Galilean telescope Galileo (Galilei, Galileo)(1564 — 1642) Galileo (spacecraft) Galileo Europa Mission (GEM) Galileo satellite navigation system gall gall bladder Galle, Johann Gottfried (1812 — 1910) gallic acid gallium gallon gallstone Galois, Évariste (1811 — 1832) Galois theory Galton, Francis (1822 — 1911) Galvani, Luigi (1737 — 1798) galvanizing galvanometer game game theory GAMES AND PUZZLES gamete gametophyte Gamma (Soviet orbiting telescope) Gamma Cassiopeiae Gamma Cassiopeiae star gamma function gamma globulin gamma rays Gamma Velorum gamma - ray burst gamma - ray satellites Gamow, George (1904 — 1968) ganglion gangrene Ganswindt, Hermann (1856 — 1934) Ganymede «garbage theory», of the origin of life Gardner, Martin (1914 — 2010) Garneau, Marc (1949 ---RRB- garnet Garnet Star (Mu Cephei) Garnet Star Nebula (IC 1396) garnierite Garriott, Owen K. (1930 ---RRB- Garuda gas gas chromatography gas constant gas giant gas laws gas - bounded nebula gaseous nebula gaseous propellant gaseous - propellant rocket engine gasoline Gaspra (minor planet 951) Gassendi, Pierre (1592 — 1655) gastric juice gastrin gastrocnemius gastroenteritis gastrointestinal tract gastropod gastrulation Gatewood, George D. (1940 ---RRB- Gauer - Henry reflex gauge boson gauge theory gauss (unit) Gauss, Carl Friedrich (1777 — 1855) Gaussian distribution Gay - Lussac, Joseph Louis (1778 — 1850) GCOM (Global Change Observing Mission) Geber (c. 720 — 815) gegenschein Geiger, Hans Wilhelm (1882 — 1945) Geiger - Müller counter Giessler tube gel gelatin Gelfond's theorem Gell - Mann, Murray (1929 ---RRB- GEM «gemination,» of martian canals Geminga Gemini (constellation) Gemini Observatory Gemini Project Gemini - Titan II gemstone gene gene expression gene mapping gene pool gene therapy gene transfer General Catalogue of Variable Stars (GCVS) general precession general theory of relativity generation ship generator Genesis (inflatable orbiting module) Genesis (sample return probe) genetic code genetic counseling genetic disorder genetic drift genetic engineering genetic marker genetic material genetic pool genetic recombination genetics GENETICS AND HEREDITY Geneva Extrasolar Planet Search Program genome genome, interstellar transmission of genotype gentian violet genus geoboard geode geodesic geodesy geodesy satellites geodetic precession Geographos (minor planet 1620) geography GEOGRAPHY Geo - IK geologic time geology GEOLOGY AND PLANETARY SCIENCE geomagnetic field geomagnetic storm geometric mean geometric sequence geometry GEOMETRY geometry puzzles geophysics GEOS (Geodetic Earth Orbiting Satellite) Geosat geostationary orbit geosynchronous orbit geosynchronous / geostationary transfer orbit (GTO) geosyncline Geotail (satellite) geotropism germ germ cells Germain, Sophie (1776 — 1831) German Rocket Society germanium germination Gesner, Konrad von (1516 — 1565) gestation Get Off the Earth puzzle Gettier problem geyser g - force GFO (Geosat Follow - On) GFZ - 1 (GeoForschungsZentrum) ghost crater Ghost Head Nebula (NGC 2080) ghost image Ghost of Jupiter (NGC 3242) Giacconi, Riccardo (1931 ---RRB- Giacobini - Zinner, Comet (Comet 21P /) Giaever, Ivar (1929 ---RRB- giant branch Giant Magellan Telescope giant molecular cloud giant planet giant star Giant's Causeway Giauque, William Francis (1895 — 1982) gibberellins Gibbs, Josiah Willard (1839 — 1903) Gibbs free energy Gibson, Edward G. (1936 ---RRB- Gilbert, William (1544 — 1603) gilbert (unit) Gilbreath's conjecture gilding gill gill (unit) Gilruth, Robert R. (1913 — 2000) gilsonite gimbal Ginga ginkgo Giotto (ESA Halley probe) GIRD (Gruppa Isutcheniya Reaktivnovo Dvisheniya) girder glacial drift glacial groove glacier gland Glaser, Donald Arthur (1926 — 2013) Glashow, Sheldon (1932 ---RRB- glass GLAST (Gamma - ray Large Area Space Telescope) Glauber, Johann Rudolf (1607 — 1670) glaucoma glauconite Glenn, John Herschel, Jr. (1921 ---RRB- Glenn Research Center Glennan, T (homas) Keith (1905 — 1995) glenoid cavity glia glial cell glider Gliese 229B Gliese 581 Gliese 67 (HD 10307, HIP 7918) Gliese 710 (HD 168442, HIP 89825) Gliese 86 Gliese 876 Gliese Catalogue glioma glissette glitch Global Astrometric Interferometer for Astrophysics (GAIA) Global Oscillation Network Group (GONG) Globalstar globe Globigerina globular cluster globular proteins globule globulin globus pallidus GLOMR (Global Low Orbiting Message Relay) GLONASS (Global Navigation Satellite System) glossopharyngeal nerve Gloster E. 28/39 glottis glow - worm glucagon glucocorticoid glucose glucoside gluon Glushko, Valentin Petrovitch (1908 — 1989) glutamic acid glutamine gluten gluteus maximus glycerol glycine glycogen glycol glycolysis glycoprotein glycosidic bond glycosuria glyoxysome GMS (Geosynchronous Meteorological Satellite) GMT (Greenwich Mean Time) Gnathostomata gneiss Go Go, No - go goblet cell GOCE (Gravity field and steady - state Ocean Circulation Explorer) God Goddard, Robert Hutchings (1882 — 1945) Goddard Institute for Space Studies Goddard Space Flight Center Gödel, Kurt (1906 — 1978) Gödel universe Godwin, Francis (1562 — 1633) GOES (Geostationary Operational Environmental Satellite) goethite goiter gold Gold, Thomas (1920 — 2004) Goldbach conjecture golden ratio (phi) Goldin, Daniel Saul (1940 ---RRB- gold - leaf electroscope Goldstone Tracking Facility Golgi, Camillo (1844 — 1926) Golgi apparatus Golomb, Solomon W. (1932 — 2016) golygon GOMS (Geostationary Operational Meteorological Satellite) gonad gonadotrophin - releasing hormone gonadotrophins Gondwanaland Gonets goniatite goniometer gonorrhea Goodricke, John (1764 — 1786) googol Gordian Knot Gordon, Richard Francis, Jr. (1929 — 2017) Gore, John Ellard (1845 — 1910) gorge gorilla Gorizont Gott loop Goudsmit, Samuel Abraham (1902 — 1978) Gould, Benjamin Apthorp (1824 — 1896) Gould, Stephen Jay (1941 — 2002) Gould Belt gout governor GPS (Global Positioning System) Graaf, Regnier de (1641 — 1673) Graafian follicle GRAB graben GRACE (Gravity Recovery and Climate Experiment) graceful graph gradient Graham, Ronald (1935 ---RRB- Graham, Thomas (1805 — 1869) Graham's law of diffusion Graham's number GRAIL (Gravity Recovery and Interior Laboratory) grain (cereal) grain (unit) gram gram - atom Gramme, Zénobe Théophile (1826 — 1901) gramophone Gram's stain Gran Telescopio Canarias (GTC) Granat Grand Tour grand unified theory (GUT) Grandfather Paradox Granit, Ragnar Arthur (1900 — 1991) granite granulation granule granulocyte graph graph theory graphene graphite GRAPHS AND GRAPH THEORY graptolite grass grassland gravel graveyard orbit gravimeter gravimetric analysis Gravitational Biology Facility gravitational collapse gravitational constant (G) gravitational instability gravitational lens gravitational life gravitational lock gravitational microlensing GRAVITATIONAL PHYSICS gravitational slingshot effect gravitational waves graviton gravity gravity gradient gravity gradient stabilization Gravity Probe A Gravity Probe B gravity - assist gray (Gy) gray goo gray matter grazing - incidence telescope Great Annihilator Great Attractor great circle Great Comets Great Hercules Cluster (M13, NGC 6205) Great Monad Great Observatories Great Red Spot Great Rift (in Milky Way) Great Rift Valley Great Square of Pegasus Great Wall greater omentum greatest elongation Green, George (1793 — 1841) Green, Nathaniel E. Green, Thomas Hill (1836 — 1882) green algae Green Bank Green Bank conference (1961) Green Bank Telescope green flash greenhouse effect greenhouse gases Green's theorem Greg, Percy (1836 — 1889) Gregorian calendar Grelling's paradox Griffith, George (1857 — 1906) Griffith Observatory Grignard, François Auguste Victor (1871 — 1935) Grignard reagent grike Grimaldi, Francesco Maria (1618 — 1663) Grissom, Virgil (1926 — 1967) grit gritstone Groom Lake Groombridge 34 Groombridge Catalogue gross ground, electrical ground state ground - track group group theory GROUPS AND GROUP THEORY growing season growth growth hormone growth hormone - releasing hormone growth plate Grudge, Project Gruithuisen, Franz von Paula (1774 — 1852) Grus (constellation) Grus Quartet (NGC 7552, NGC 7582, NGC 7590, and NGC 7599) GSLV (Geosynchronous Satellite Launch Vehicle) g - suit G - type asteroid Guericke, Otto von (1602 — 1686) guanine Guiana Space Centre guidance, inertial Guide Star Catalog (GSC) guided missile guided missiles, postwar development Guillaume, Charles Édouard (1861 — 1938) Gulf Stream (ocean current) Gulfstream (jet plane) Gullstrand, Allvar (1862 — 1930) gum Gum Nebula gun metal gunpowder Gurwin Gusev Crater gut Gutenberg, Johann (c. 1400 — 1468) Guy, Richard Kenneth (1916 ---RRB- guyot Guzman Prize gymnosperm gynecology gynoecium gypsum gyrocompass gyrofrequency gyropilot gyroscope gyrostabilizer Gyulbudagian's Nebula cluster globular proteins globule globulin globus pallidus GLOMR (Global Low Orbiting Message Relay) GLONASS (Global Navigation Satellite System) glossopharyngeal nerve Gloster E. 28/39 glottis glow - worm glucagon glucocorticoid glucose glucoside gluon Glushko, Valentin Petrovitch (1908 — 1989) glutamic acid glutamine gluten gluteus maximus glycerol glycine glycogen glycol glycolysis glycoprotein glycosidic bond glycosuria glyoxysome GMS (Geosynchronous Meteorological Satellite) GMT (Greenwich Mean Time) Gnathostomata gneiss Go Go, No - go goblet cell GOCE (Gravity field and steady - state Ocean Circulation Explorer) God Goddard, Robert Hutchings (1882 — 1945) Goddard Institute for Space Studies Goddard Space Flight Center Gödel, Kurt (1906 — 1978) Gödel universe Godwin, Francis (1562 — 1633) GOES (Geostationary Operational Environmental Satellite) goethite goiter gold Gold, Thomas (1920 — 2004) Goldbach conjecture golden ratio (phi) Goldin, Daniel Saul (1940 ---RRB- gold - leaf electroscope Goldstone Tracking Facility Golgi, Camillo (1844 — 1926) Golgi apparatus Golomb, Solomon W. (1932 — 2016) golygon GOMS (Geostationary Operational Meteorological Satellite) gonad gonadotrophin - releasing hormone gonadotrophins Gondwanaland Gonets goniatite goniometer gonorrhea Goodricke, John (1764 — 1786) googol Gordian Knot Gordon, Richard Francis, Jr. (1929 — 2017) Gore, John Ellard (1845 — 1910) gorge gorilla Gorizont Gott loop Goudsmit, Samuel Abraham (1902 — 1978) Gould, Benjamin Apthorp (1824 — 1896) Gould, Stephen Jay (1941 — 2002) Gould Belt gout governor GPS (Global Positioning System) Graaf, Regnier de (1641 — 1673) Graafian follicle GRAB graben GRACE (Gravity Recovery and Climate Experiment) graceful graph gradient Graham, Ronald (1935 ---RRB- Graham, Thomas (1805 — 1869) Graham's law of diffusion Graham's number GRAIL (Gravity Recovery and Interior Laboratory) grain (cereal) grain (unit) gram gram - atom Gramme, Zénobe Théophile (1826 — 1901) gramophone Gram's stain Gran Telescopio Canarias (GTC) Granat Grand Tour grand unified theory (GUT) Grandfather Paradox Granit, Ragnar Arthur (1900 — 1991) granite granulation granule granulocyte graph graph theory graphene graphite GRAPHS AND GRAPH THEORY graptolite grass grassland gravel graveyard orbit gravimeter gravimetric analysis Gravitational Biology Facility gravitational collapse gravitational constant (G) gravitational instability gravitational lens gravitational life gravitational lock gravitational microlensing GRAVITATIONAL PHYSICS gravitational slingshot effect gravitational waves graviton gravity gravity gradient gravity gradient stabilization Gravity Probe A Gravity Probe B gravity - assist gray (Gy) gray goo gray matter grazing - incidence telescope Great Annihilator Great Attractor great circle Great Comets Great Hercules Cluster (M13, NGC 6205) Great Monad Great Observatories Great Red Spot Great Rift (in Milky Way) Great Rift Valley Great Square of Pegasus Great Wall greater omentum greatest elongation Green, George (1793 — 1841) Green, Nathaniel E. Green, Thomas Hill (1836 — 1882) green algae Green Bank Green Bank conference (1961) Green Bank Telescope green flash greenhouse effect greenhouse gases Green's theorem Greg, Percy (1836 — 1889) Gregorian calendar Grelling's paradox Griffith, George (1857 — 1906) Griffith Observatory Grignard, François Auguste Victor (1871 — 1935) Grignard reagent grike Grimaldi, Francesco Maria (1618 — 1663) Grissom, Virgil (1926 — 1967) grit gritstone Groom Lake Groombridge 34 Groombridge Catalogue gross ground, electrical ground state ground - track group group theory GROUPS AND GROUP THEORY growing season growth growth hormone growth hormone - releasing hormone growth plate Grudge, Project Gruithuisen, Franz von Paula (1774 — 1852) Grus (constellation) Grus Quartet (NGC 7552, NGC 7582, NGC 7590, and NGC 7599) GSLV (Geosynchronous Satellite Launch Vehicle) g - suit G - type asteroid Guericke, Otto von (1602 — 1686) guanine Guiana Space Centre guidance, inertial Guide Star Catalog (GSC) guided missile guided missiles, postwar development Guillaume, Charles Édouard (1861 — 1938) Gulf Stream (ocean current) Gulfstream (jet plane) Gullstrand, Allvar (1862 — 1930) gum Gum Nebula gun metal gunpowder Gurwin Gusev Crater gut Gutenberg, Johann (c. 1400 — 1468) Guy, Richard Kenneth (1916 ---RRB- guyot Guzman Prize gymnosperm gynecology gynoecium gypsum gyrocompass gyrofrequency gyropilot gyroscope gyrostabilizer Gyulbudagian's Nebula Cluster (M13, NGC 6205) Great Monad Great Observatories Great Red Spot Great Rift (in Milky Way) Great Rift Valley Great Square of Pegasus Great Wall greater omentum greatest elongation Green, George (1793 — 1841) Green, Nathaniel E. Green, Thomas Hill (1836 — 1882) green algae Green Bank Green Bank conference (1961) Green Bank Telescope green flash greenhouse effect greenhouse gases Green's theorem Greg, Percy (1836 — 1889) Gregorian calendar Grelling's paradox Griffith, George (1857 — 1906) Griffith Observatory Grignard, François Auguste Victor (1871 — 1935) Grignard reagent grike Grimaldi, Francesco Maria (1618 — 1663) Grissom, Virgil (1926 — 1967) grit gritstone Groom Lake Groombridge 34 Groombridge Catalogue gross ground, electrical ground state ground - track group group theory GROUPS AND GROUP THEORY growing season growth growth hormone growth hormone - releasing hormone growth plate Grudge, Project Gruithuisen, Franz von Paula (1774 — 1852) Grus (constellation) Grus Quartet (NGC 7552, NGC 7582, NGC 7590, and NGC 7599) GSLV (Geosynchronous Satellite Launch Vehicle) g - suit G - type asteroid Guericke, Otto von (1602 — 1686) guanine Guiana Space Centre guidance, inertial Guide Star Catalog (GSC) guided missile guided missiles, postwar development Guillaume, Charles Édouard (1861 — 1938) Gulf Stream (ocean current) Gulfstream (jet plane) Gullstrand, Allvar (1862 — 1930) gum Gum Nebula gun metal gunpowder Gurwin Gusev Crater gut Gutenberg, Johann (c. 1400 — 1468) Guy, Richard Kenneth (1916 ---RRB- guyot Guzman Prize gymnosperm gynecology gynoecium gypsum gyrocompass gyrofrequency gyropilot gyroscope gyrostabilizer Gyulbudagian's Nebula (HH215)
Gillian Wilson, professor of physics and astronomy at UC Riverside, added, «Fascinatingly, however, the study found that the percentage of galaxies which had stopped forming stars in those young, distant clusters, was much lower than the percentage found in much older, nearby clusters.
LRIS also records the spectra of up to 50 objects simultaneously, especially useful for studies of clusters of galaxies in the most distant reaches, and earliest times, of the universe.
They then compared the two datasets with observations of the young stars in the Orion Nebula Cluster, perhaps the most well - studied young star cluster in the Milky Way Cluster, perhaps the most well - studied young star cluster in the Milky Way cluster in the Milky Way galaxy.
The study's results suggest that compact galaxies in galaxy clusters like CL J1001 likely form their stars during brief and more violent outbursts than galaxies that are outside such clusters.
«It appears that we have captured this galaxy cluster at a critical stage just as it has shifted from a loose collection of galaxies (protoclusters) into a young, but fully formed galaxy cluster,» David Elbaz from CEA and the study's co-author, said in the statement.
My colleagues and I were using the Echellette Spectrograph and Imager (ESI) instrument, which looks at faint objects in the visible wavelengths, to study star clusters and small galaxies.
In their paper, Hudson and Epps list dozens of previous studies that have attempted to measure and observe the dark matter web, and they say they hope their stacking techniques to measure the filaments between groups and clusters of galaxies can serve as a foundation for future filament studies.
He has been a regular observer at Keck Observatory since 1997 studying elliptical galaxies, jets around NGC1097 and obtaining spectra of ultra compact dwarf galaxies in the Coma Cluster.
By studying the velocities of the galaxies in the cluster he showed that the cluster contained much more dark, invisible matter than visible matter.
By studying different models of just how mass is positioned in the galaxy cluster, astronomers could predict one more light path for Refsdal, one that would delay the light reaching the telescope until late 2015 or early 2016.
«The protocluster will very likely grow into a massive cluster of galaxies like the Coma cluster, which weighs more than a quadrillion suns,» said Purdue University astrophysicist Dr. Kyoung - Soo Lee, who initially spotted the protocluster and is one of the authors in this study.
By studying reionization, we can learn a great deal about the process of structure formation in the universe, and find the evolutionary links between the remarkably smooth matter distribution at early times revealed by CMB studies, and the highly structured universe of galaxies and clusters of galaxies at redshifts of 6 and below.
It will be used for many different types of astronomical studies ranging from detailed imaging of galaxy clusters in the early universe to mapping areas of star formation in our own Galaxy.
«We present results from an optical - infrared photometric study of early - type (E+S 0) galaxies in 19 galaxy clusters out to z = 0.9.»
In the 1930s, astronomer Fritz Zwicky first noticed that the motion of galaxies he was studying in the Coma cluster couldn't be accounted for by the gravity from visible matter of stars, gas, and dusIn the 1930s, astronomer Fritz Zwicky first noticed that the motion of galaxies he was studying in the Coma cluster couldn't be accounted for by the gravity from visible matter of stars, gas, and dusin the Coma cluster couldn't be accounted for by the gravity from visible matter of stars, gas, and dust.
Zweibel has a broad research program in plasma astrophysics that spans the study of the sun and stars; the formation, evolution and structure of galaxies; and the physics of galaxy clusters.
Work on infrared studies of local galaxy clusters took me to the International Science and Engineering Fair (ISEF) in 2007 where I won the Bok Second Prize.
A study of 72 large cluster collisions shows how dark matter in galaxy clusters behaves when they collide.
Here are images of six different galaxy clusters taken with NASA's Hubble Space Telescope (blue) and Chandra X-ray Observatory (pink) in a study of how dark matter in clusters of galaxies behaves when the clusters collide.
SDSS studies have probed the dark matter environments of quasars through clustering measurements, revealed populations of quasars whose central engines are hidden by obscuring dust, captured changes in quasar spectra that show clouds moving in the gravitational grip of the central black hole, and allowed a comprehensive census of the much fainter accreting black holes (active galactic nuclei, or AGN) in present - day galaxies.
a b c d e f g h i j k l m n o p q r s t u v w x y z