Sentences with phrase «winter sea ice thickness»

Not exact matches

Together with his AWI colleague Dr Stefan Hendricks, they evaluated the sea ice thickness measurements taken over the past five winters by the CyroSat - 2 satellite for their sea ice projection.
If we compare the ice thickness map of the previous winter with that of 2012, we can see that the current ice conditions are similar to those of the spring of 2012 — in some places, the ice is even thinner,» Dr Marcel Nicolaus, sea ice physicist at AWI, said today at a press conference during the EGU General Assembly in Vienna.
Rising polar temperatures caused the average thickness of winter Arctic sea ice to decrease from about 12 feet to 6 feet between 1978 and 2008, and thinner ice melts more readily.
This is because the «early camp» are missing a major factor, even though most of them don't know it: That factor is that first year sea ice will continue to grow to thicknesses of around 1.5 to 2m through the winter, so the key issue in whether September can be virtually sea - ice free is how much sea ice can be lost between March and September.
Sea ice less than one year old was somewhat thicker than has been observed in recent years, with a modal thickness around 1.8 m, after one of the coldest North American winters in recent years.
Canadian Ice Service, 4.7, Multiple Methods As with CIS contributions in June 2009, 2010, and 2011, the 2012 forecast was derived using a combination of three methods: 1) a qualitative heuristic method based on observed end - of - winter arctic ice thicknesses and extents, as well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model, which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoIce Service, 4.7, Multiple Methods As with CIS contributions in June 2009, 2010, and 2011, the 2012 forecast was derived using a combination of three methods: 1) a qualitative heuristic method based on observed end - of - winter arctic ice thicknesses and extents, as well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model, which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoice thicknesses and extents, as well as an examination of Surface Air Temperature (SAT), Sea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model, which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoSea Level Pressure (SLP) and vector wind anomaly patterns and trends; 2) an experimental Optimal Filtering Based (OFB) Model, which uses an optimal linear data filter to extrapolate NSIDC's September Arctic Ice Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoIce Extent time series into the future; and 3) an experimental Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictosea ice predictoice predictors.
Canadian Ice Service, 4.7 (+ / - 0.2), Heuristic / Statistical (same as June) The 2015 forecast was derived by considering a combination of methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic ice thickness extents, as well as winter Surface Air Temperature, Sea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoIce Service, 4.7 (+ / - 0.2), Heuristic / Statistical (same as June) The 2015 forecast was derived by considering a combination of methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic ice thickness extents, as well as winter Surface Air Temperature, Sea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoice thickness extents, as well as winter Surface Air Temperature, Sea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoSea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictosea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictosea ice predictoice predictors.
Canadian Ice Service, 4.7 (± 0.2), Heuristic / Statistical (same as June) The 2015 forecast was derived by considering a combination of methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic ice thickness extents, as well as winter Surface Air Temperature, Sea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoIce Service, 4.7 (± 0.2), Heuristic / Statistical (same as June) The 2015 forecast was derived by considering a combination of methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic ice thickness extents, as well as winter Surface Air Temperature, Sea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoice thickness extents, as well as winter Surface Air Temperature, Sea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoSea Level Pressure and vector wind anomaly patterns and trends; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictosea ice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictoice extent timeseries into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictosea ice predictoice predictors.
It is likely that there has been about a 40 percent decline in Arctic sea - ice thickness during late summer to early autumn in recent decades and a considerably slower decline in winter sea - ice thickness.
Based on winter air temperatures and sea ice extents and thickness, a September 2016 minimum ice extent value of 4.3 million km2 is heuristically predicted.
As with previous CIS contributions, the 2016 forecast was derived by considering a combination of methods: 1) a qualitative heuristic method based on observed end - of - winter Arctic ice thickness / extent, as well as winter surface air temperature, spring ice conditions and the summer temperature forecast; 2) a simple statistical method, Optimal Filtering Based Model (OFBM), that uses an optimal linear data filter to extrapolate the September sea ice extent time - series into the future and 3) a Multiple Linear Regression (MLR) prediction system that tests ocean, atmosphere and sea ice predictors.
Now, the complete 2010 — 11 winter season data have been processed to produce a seasonal variation map of sea - ice thickness.
We usually focus on summer because that's the most dramatic, but now the winter is starting to respond,» said Stroeve, who just returned from an Arctic expedition where she measured sea - ice thickness.
9000000 km ^ 2 Arctic sea ice melt spring — summer 1.8 e +13 m ^ 3 at a 2m average thickness — this is generous — see http://psc.apl.washington.edu/ArcticSeaiceVolume/IceVolume.php 917 kg / m ^ 3 for ice 1.6506 e +16 kg / year 5.513004 e +21 joules 0.143 percent going into ice melt spring — summer; BUT, a roughly equal amount comes back out during the refreeze in the fall — winter; and since it's floating, it doesn't effect sea level.
The research, reported in Geophysical Research Letters, showed that last winter the average thickness of sea ice over the whole Arctic fell by 26 cm (10 %) compared with the average thickness of the previous five winters, but sea ice in the western Arctic lost around 49 cm of thickness.
Last winter the average thickness of sea ice over the whole Arctic fell by 26 cm (10 %) compared with the average thickness of the previous five winters, but sea ice in the western Arctic lost around 49 cm of thickness.
Global Climate Change Record 10 - 19 % Declines Seen in Arctic Sea Ice Thickness Last Winter, Satellite Data Reveals Argentine Glacier (Perito Moreno) Breaks in Winter for the First Time Ever OK Grasshopper, This Is What You SHOULD Have Done to Prepare
a b c d e f g h i j k l m n o p q r s t u v w x y z