Sentences with phrase «with atmospheric water vapour»

Observational evidence indicates that the frequency of the heaviest rainfall events has likely increased within many land regions in general agreement with model simulations that indicate that rainfall in the heaviest events is likely to increase in line with atmospheric water vapour concentration.

Not exact matches

Combining observations from satellites and ground stations with climate models, they evaluated different factors that affect telescope vision, such as the amount of water vapour, wind speeds and atmospheric turbulence.
In a warming world, atmospheric water vapour content is expected to rise due to an increase in saturation water vapour pressure with air temperature.
Presumably the water vapour feedback in models is dealt with by determining / estimating / calculating the radiative forcing from water vapour and then making some assumption about the water vapour response to atmospheric warming (e.g. assuming constant relative humidity).
The second factor is the insulating effect of the atmosphere of which well over 90 % results from atmospheric water in the form of clouds and water vapour with the remaining 10 % due primarily from CO2 and ozone with just a slightly detectable effect from methane and a trivial effect from all the other gases named in tyhe Kyoto Accord that is so small it can't even be detected on measurements of the Earth's radiative spectrum.
Other evidence [which I will present in future articles] seems to indicate that these same climate models are NOT realistically simulating such factors as atmospheric water vapour, clouds, solar energy fluctuations and cosmic ray effects, Earth's changing geomagnetic field, and Earth's interior heat with consequent surface heat variations.
The associated energy changes at TOA are associated with water vapour due to changing atmospheric temps and cloud changes anti-correlated with SST in the tropical and sub-tropical Pacific.
Areas with very high (40,000 ppm) of water vapour can easily be compared to areas at the same latitude with very low (nearly 0 ppm) of water vapour and the net radiation across the atmospheric column is precisely opposite to what you insist your experiments prove.
So, that's 1.2 degrees C for the basic physics of added greenhouse effect of a doubling of carbon dioxide in the atmosphere; coupled with a further increase of a similar magnitude from changes in atmospheric water vapour that come about as a direct consequence.
The physics that must be included to investigate the moist greenhouse is principally: (i) accurate radiation incorporating the spectral variation of gaseous absorption in both the solar radiation and thermal emission spectral regions, (ii) atmospheric dynamics and convection with no specifications favouring artificial atmospheric boundaries, such as between a troposphere and stratosphere, (iii) realistic water vapour physics, including its effect on atmospheric mass and surface pressure, and (iv) cloud properties that respond realistically to climate change.
Based on the understanding of both the physical processes that control key climate feedbacks (see Section 8.6.3), and also the origin of inter-model differences in the simulation of feedbacks (see Section 8.6.2), the following climate characteristics appear to be particularly important: (i) for the water vapour and lapse rate feedbacks, the response of upper - tropospheric RH and lapse rate to interannual or decadal changes in climate; (ii) for cloud feedbacks, the response of boundary - layer clouds and anvil clouds to a change in surface or atmospheric conditions and the change in cloud radiative properties associated with a change in extratropical synoptic weather systems; (iii) for snow albedo feedbacks, the relationship between surface air temperature and snow melt over northern land areas during spring and (iv) for sea ice feedbacks, the simulation of sea ice thickness.
Bear in mind that the representation of clouds in climate models (and of the water vapour which is intimately involved with cloud formation) is such as to amplify the forecast global warming from increasing atmospheric carbon dioxide — on average over most of the models — by a factor of about three (5).
The resulting warming due to the water vapour is in fact larger than the initial warming due to the CO2 that forced it to happen, and this is the point of the Lacis paper - yes, water vapour is a more important greenhouse gas than CO2, but water vapour doesn't change systematically with time UNLESS CO2 is changing and initiating a warming that sets into motion the surface and atmospheric processes that allow water vapour to systematically increase.
In particular, about eight years ago, Nasa launched the atmospheric infrared sounder on board the Aqua satellite, which measures water vapour distribution with great accuracy.
In the case of atmospheric calculations with water vapour so dominant I'm not sure how much effect a correction would have.
-- Water Vapour (WV) does not mix evenly in with the other gases and atmospheric WV content varies from location to location but I believe it is estimated to be around 4 to 5 %.
The link between heat and Hurricane intensity is unquestionable, as atmospheric water vapour density increases with higher temperatures, the energy source is likewise augmented, same goes for cyclones.
a b c d e f g h i j k l m n o p q r s t u v w x y z